The CSI Journal on
Computer Science and Engineering

A 6-monthly publication of Computer Society of Iran (CSI)

Editor-in-Chief
H. Sarbazi-Azad, Professor, Sharif University of Technology, and IPM, Tehran, Iran.

Editorial Board

G. Agha, Professor, University of Illinois at Urbana-Champaign, USA.
H. Arabnia, Professor, University of Georgia, USA.

F. Arbab, Professor, CWI and Leiden University, The Netherlands.

K. Badie, Associate Professor, Iran Telecommunication Research Center, Iran.
N. Bagherzadeh, Professor, University of California at Irvine, USA.

B. Bose, Professor, Oregon State University, USA.

A. Edalat, Professor, Imperial College, UK.

M. Fathi, Professor, Iran University of Science and Tech., Iran.

M. H. Ghassemian, Professor, Tarbiat Modarres University, Iran.

M. Ghodsi, Professor, Sharif University of Technology, Iran.

A. R. Hurson, Professor, Pennsylvania State University, USA.

F. Jahanian, Professor, University of Michigan, USA.

E. Kabir, Professor, Tarbiat Modarres University, Iran.

F. C. M. Lau, Professor, University of Hong Kong, Hong Kong.

A. Movaghar, Professor, Sharif University of Technology, Iran.

N. Mahdavi-Amiri, Professor, Sharif University of Technology, Iran.
R. Meybodi, Professor, Amirkabir University of Technology, Iran.

K. Nakano, Professor, Hiroshima University, Japan.

M. Ould-Khaoua, Professor, University of Glasgow, UK.

B. Parhami, Professor, University of California at Santa Barbara, USA.
R. Safabakhsh, Professor, Amirkabir University of Technology, Iran.
H. Sarbazi-Azad, Professor, Sharif University of Technology, and IPM, Iran.
B. Shirazi, Professor, Washington State University, USA.

A. Zomaya, Professor, the University of Sydney, Australia

Assistants

M. Asadinia (Editorial Assistant)
L. Nourani (Publication Assistant)
A. Tavakkol (Webmaster)

Disclaimer: Publication of papers in CSI-JCSE does not imply that the editorial board, reviewers, or CSI-JCSE accept,
approve or endorse the data and conclusions of authors.



The CSI Journal on
Computer Science and Engineering

Vol. 13 No. 2 2016

CONTENTS

e An Energy-Optimal Real-Time Scheduling Algorithm for Unrelated DVS-Enabled Parallel
7= o 0 1 TP |
Mahmood Gholipour, Mehdi Kargahi, Heshaam Faili, Shahbaz Y oussefi and Hadi Ravanbakhsh

e Taxonomy and Overview of Distributed Malfunction Diagnosis in Networks of Intelligent
N[00 L 23
Behrooz Parhami, Nan Wu and Sixin Tao

e Exploring Reconfigurability Options Among Decimal Adders .........ccccovvriieieiiiniinncie e 32
Samaneh Emami and Mehdi Sedighi

e A Deep Learning Method to Estimate 3D Point of Regard by Joint Head and Eye
) {0 0= LA (o o PR < 24
Rahim Entezari, Mohammad Mahdi Arzani, Mahmood Fathy and Amir Hossein Bayat

e The Impact of Excess-Modulo Representation of Residues on Modulo-(2"-5) Parallel Prefix
AGAITION Lo e e e e e e e e e e e e 48
Ghassem Jaberi and Hassan Ghasemi Motlagh

e Low-Power Hierarchical FINFET-Based SRAM ...t e 54
Somayeh Maabi, Sina Sayyah Ensan, Mohammad Hossein Moaiyeri and Shaahin Hessabi






( ™ The CSI Journal on
[ ™ Computer Science and Engineering
S Vol. 13, No. 2, 2016

I—I |- Pages 1-22

| _ C“ﬁ'if)‘ﬁter Regular Paper

Scienceg Engineering

An Energy-Optimal Real-Time Scheduling Algorithm for
Unrelated DVS-Enabled Parallel Machines

Mahmood Gholipour' Mehdi Kargahi' > Heshaam Faili'
Shahbaz Youssefi’ Hadi Ravanbakhsh'

'School of Eectrical and Computer Engineering, University of Tehran, Tehran, Iran
*School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran. Iran
*Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova,
Italy

Abstract

The category of unrelated parallel machines is one of the most realistic models of heterogeneous multiprocessor systems. In this model, the
pair of task and machine (processor) jointly specifies the required execution time and energy to complete the task. In this paper, we consider
the problem of scheduling real-time tasks on a set of unrelated parallel machines with the capability of voltage selection through Dynamic
Voltage Scaling (DVS). The tasks can migrate among the processors and each processor is also permitted to switch among a set of discrete
voltage levels (and thus, task-specific speed levels) to minimize the overall system energy usage. A polynomial-time Energy-Optimal
Real-Time Scheduling Algorithm (EORTSA) is proposed: At first, the problem of energy-optimal task-to-machine and voltage-level-to-task
assignments are formulated as a linear program and used as a polynomial-time schedule ability test for periodic tasks. Second, task sets
which are passed the schedule ability test are feasibly scheduled on the machines using a matching-based algorithm. We prove that the worst
number of migratory tasks is 2m, where m is the number of machines. Also, the worst-case total number of migrations, preemptions and
voltage-level switches is of O(m?) in each schedule e period, which is a period of time between two arbitrary consecutive task releases in the
system. Comparisons with the PCG algorithm show up to 60% energy saving and reveal that EORTSA outperforms PCG in terms of average
number of task migrations and preemptions, especially in systems with large number of tasks.

Keywords: Dynamic Voltage Scaling (DVS), Energy Optimization, Migration, Real-Time Systems, Scheduling, Unrelated Parallel
Machines.

1. Introduction MPSoCs, clouds, etc.) have resulted great speedups through
the execution of different tasks in parallel. The parallel
processing elements in the mentioned systems may have
either equivalent capabilities (e.g., multi-core processors or
homogeneous multi-server systems) or different capabilities
and characteristics (e.g., asymmetric multiprocessors or
heterogeneous multi-server systems with different services as
well as cloud computing systems).

Even systems which are supposed to have homogeneous
processors may actually be heterogeneous due to reasons
such as process variation [1] and processor aging [2]. In

Real-time embedded applications need predictable
computing platforms and deep information about their
behavior with respect to different patterns of usage to satisfy
their time-sensitive requirements. Such applications include
safety-critical decision making systems such as those related
to earthquake, Air Traffic Control (ATC), transportation,
militarism, and many others which mostly have real-time and
distributed natures. Recent advances in multiprocessor and
distributed system design (multi/many-core processors,



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ... (Regular Paper) 2

overall, the diversity of available computer systems which
can be connected through interconnection networks, and the
distributed nature of the above-mentioned applications,
confirm that most systems are inherently heterogeneous.
These heterogenecities may be observed in both the
computing capability and power consumption of the
processing elements, with an emphasis to the fact that one
major concern in the design and management of such
systems is their energy usage.

As energy is an expensive resource nowadays, many
studies in the context of real-time systems have been
concentrated on the methods of energy saving in centralized
[3, 4, 5] and distributed [6, 7] real-time systems with the
consideration of the fact that the performance of such
systems should remain in an acceptable level. A well-known
method to do such management is to use dynamic voltage
scaling (DVS) [5], which is available in most modern
microprocessors [8, 9].

Meanwhile, another important property of the
heterogeneous distributed real-time systems is that at a
specific voltage-level of a DVS-enabled processor, the speed
and energy usage are task-specific, namely they depend on
the task running on the processor. This property, which is
valid for unrelated parallel machines (as defined formally in
Section 2), is a realistic consideration for today’s computing
systems. Such systems may contain different processing
units (e.g., graphics co-processors, math co-processors,
CPUs with different architectures, etc.), where each unit may
better work for specific tasks from both aspects of
computation speed and power usage. (Throughout this paper,
we use the two terms machine and processor
interchangeably).

In the current study, we present a scheduling algorithm
for a relatively complex multiprocessor system which
reflects a general behavior of the distributed real-time
systems mentioned above. We consider a distributed system
with periodic real-time tasks, where the system processors
are heterogeneous from both aspects of processing capability
and power usage. Furthermore, we suppose that speed and
energy usage at a specific voltage-level of the processor are
task-specific.

We consider a multi-criteria optimization problem which
within the real-time tasks should meet their deadline and the
energy usage should be minimized. Also, some methods will
be proposed to reduce the number of task migrations as
well as preemption and voltage-level switches. To the
best of our knowledge, we are unaware of any previous
study on a similar problem with the properties stated in this
paper.

The rest of this paper is organized as follows. The next
section reviews some previous work on identical, uniform,
and unrelated parallel machines. Then, we present a precise
definition of the problem considered in the current study in
Section 3. In Section 4, the concept of a schedule period
is introduced to reduce the problem to an abstract
version. Next, in Section 5, the proposed scheduling
algorithm and the respective schedule ability test are
described, whereas its optimality and correctnessare proved.
In Section 6, we discuss our method to reduce the degree of
migrations as well as the number of preemptions and
voltage-level switches. Section 7 reports the simulation
results and Section 8 concludes the paper and indicates some
future works.

2. Background

In this section, we review the properties and the respective
studies of three categories of multiprocessor systems, namely
identical, uniform, and unrelated parallel machines.

2.1. Identical Parallel Machines

The set of machines which are all identical and have the
same computational power is called a set of identical parallel
machines. In 1969, Muntz and Coffman [10] presented a
level algorithm for systems with two identical processors. A
strict fairness constraint for such systems, called P-fair, and a
scheduling algorithm based on P-fair has been presented by
Baruah et al. [11]. According to this algorithm, the resources
are given to the tasks in proportion to their weights. Due to
its strict fairness, this algorithm needs to reschedule tasks
many times, which results in many task switches and
migrations, and reduces the efficiency of the algorithm. A
similar idea, namely the Fluid schedule is also given by
Holman and Anderson [12].

The Fluid schedule, which is an ideal policy, assumes
that each task executes at a constant rate. This algorithm is
almost inefficient due to its high number of rescheduling.
However, in the study, the Stagger model is also proposed
which improves the P-fair algorithm.

Dertouzos and Mok [13] presented a model for
expressing the relation between the laxity and remaining
computation time of a task, called Laxity and Computation
plane (L-C plane). The laxity of a task is a measure of
urgency, which is represented on the x-axis and its remaining
computation time is shown on the y-axis. Cho et al.[14]
extended the idea of representing tasks as tokens in the L-C
plane and introduced Time and Local Execution Time
Domain Planes (T-L planes), where time and the remaining
execution time are represented on the x-axis and y-axis,
respectively. They proposed Largest Local Remaining
Execution Time First (LLREF) scheduling algorithm based
on the T-L plane and proved that it is an optimal online
scheduling algorithm for identical parallel machines.

Megel et al. [57] introduced a novel approach to decrease
preemption and migration count in optimal global real-time
scheduling on identical multiprocessors. Their approach is
composed of an offline and an online step. In the offline step,
a linear program decides about placing jobs on intervals.
Scheduling of associated jobs within each interval is done
dynamically by an online local scheduler. Their approach
suffers from severe issues: the proposed mixed integer linear
programming of offline part is computationally complex
since the problem is solving in a hyper period and the
number of MILP variables scale with the task count,
processor count and length of the hyper period.

For the sake of energy efficiency, different approaches
have been investigated which usually consider continuous
voltage-levels for the identical machines. Lee [15], through
Dynamic Voltage and Frequency Scaling (DVES) in a
lightly-loaded multi-core system with periodic tasks,
achieved up to 64% energy saving comparing to some simple
methods. Chen et al. [16] devised a 1.13-approximation
algorithm for scheduling migratory periodic tasks on
identical multiprocessors, assuming each processor can take
arbitrary operating frequencies. Later, Chen and Kuo [17]



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 3

proposed an optimal algorithm for migratory tasks and a
1.412-approximation when for non-migratory tasks,
considering that the tasks have different power
characteristics. Also, Chen et al. [18] proposed an algorithm
with a 1.283-approximation bound for energy usage to
schedule periodic tasks over identical DVS-enabled
multiprocessor, considering both dynamic and static sources
of power consumptions. If the overhead of turning processors
on and off is not negligible, though, their algorithm is within
a 2-approximation bound.

2.2. Uniform Parallel Machines

A set of processors which are solely characterized by their
computation speeds is called a set of uniform parallel
machines. Therefore, a job that executes for t time units on a
processor with the computation speed s performs s X t units
of execution. Horvath et al. [19] extended the idea of the
level algorithm proposed in [10] to uniform heterogeneous
multiprocessors. Gonzalez and Sahni [20] proposed an
offline optimalO(n + m) scheduling algorithm with no more
than 2(m — 1) preemptions, where n is the number of tasks
and m is the number of processors.

Other works have also been done on the online
scheduling. Hochbaum and Shmoys [21] presented a
polynomial approximation algorithm to solve the minimum
makespan problem on uniform heterogeneous
multiprocessors. Baruah and Goossens [22] tried to adapt the
Rate Monotonic (RM) scheduling algorithm [23] to find a
static-priority online scheduling algorithm for uniform
multiprocessors.

They also presented a RM-feasibility test for this
problem, generalizing the RM-feasibility test of identical
heterogeneous multiprocessor systems. In a different study,
Funk et al. [24] presented a feasibility condition for periodic
task sets to be executed on uniform heterogeneous
multiprocessors. This condition (which is called FGB in
[25]) is based on the Earliest Deadline First (EDF)
scheduling algorithm [23].

In the same study, they also presented an EDF-feasibility
test; however, no efficient algorithm was found to schedule
the task sets satisfying the FGB condition. Chen and Hsueh
[25] proposed an optimal online O(n?logn) scheduling
algorithm called PCG with at most n rescheduling, where n is
the number of tasks. In their study, T-L. plane was
introduced and a greedy algorithm was proposed. They also
proved the optimality of their algorithm based on the FGB
condition.

In regard of energy efficiency in uniform parallel
machines, Funaoka et al. [54] proposed a real-time static
voltage and frequency scaling (RT-SVFS) technique based
on an optimal real-time scheduling algorithm (LLREF) by
means of T-L Plane transformation, which is a technique to
apply processor frequency scaling to LLREF scheduling.
They proposed a uniform RT-SVFS algorithm and then
extended it to an independent RT-SVFS for uniform
platforms.

Later, in [55] they extended this work and proposed a
real-time dynamic voltage and frequency scaling (RT-DVEFS)
techniques based on RT-SVFS. Despite the significant
run-time overhead associated to it, RT-DVFS obtains better
energy saving than RT-SVFS.

2.3. Unrelated Parallel Machines

In unrelated parallel machines, there is an execution rate s;;

associated with each task-processor pair (T;,PB,), with the
interpretation that task T; performs s;; x t units of execution if
executed on processor P, for t time units. Two common
methods for solving such scheduling problems in parallel
machines are task partitioning and global scheduling. In the
former method, certain tasks are only allowed to be executed
on certain machines and only partial migration is allowed.
Using this type of static decision has some performance
advantages such as reducing the migration overhead. For
example, Yu and Prasanna [26] explored minimizing the
energy usage of periodic real-time tasks on unrelated parallel
machines by task partitioning and proposed a polynomial-
time scheduling algorithm by relaxing integer linear
programming. The method of task partitioning is generally
sub-optimal. Due to the NP-hard nature of such scheduling
problems in their general form [12, 27], it is convenient to
propose heuristics or efficient algorithms for special forms of
the problems. Accordingly, the latter method, namely global
scheduling is desired in many cases to feasibly schedule the
task sets, in which an important criterion is to keep low the
number of migrations.

Lenstra et al. [28] presented a polynomial approximation
algorithm for unrelated parallel machines to find a schedule
that minimizes the makespan. They guarantee that it is not
longer than twice the optimal value for the case where the
number of processors is fixed. They also proved that no
polynomial algorithm could achieve a worst-case ratio less
than 1.5 unless P = NP. For the case of two processors,
Gonzalez et al. [29] introduced a lineartime algorithm to
construct optimal scheduling which have at most two
preemptions. Jansen and Porkolab [30] gave a fully
polynomial-time approximation algorithm for the problem of
scheduling tasks in the case where each task can be executed
only on one processor. Srivastava [31] developed a tabu
search heuristic for minimizing makespan in that problem.
This algorithm produces near-optimal results with reasonable
amounts of computational time for problems of reasonable
size. Baruah [32] proposed a polynomial-time feasibility test
for the global heterogeneous multiprocessor scheduling.
They also presented a scheduling solution as a proof for
correctness of the test; such schedule however suffers from
high preemption and migration cost.

The lack of an optimal scheduling algorithm with
reasonable cost motivated us to propose an optimal
scheduling algorithm; however optimality is only one of
aspect of our work and we also consider the energy
optimality of scheduling algorithm. Recently, Cucu-Grosjean
and Goossens [56] proposed two exact schedule ability tests
for task-level fixed-priority and job-level fixed-priority
earliest deadline first scheduler on specific tasks executing
on unrelated parallel machines. Also, for a special case of
heterogeneous parallel machines which includes two type of
processors, Raravi et al. [58] proposed two scheduling
algorithms with time complexity of O(nlog(n)) for implicit
deadline sporadic task set. They consider that task migration
is only possible among processors of the same type.

Many works have also been done on energy-constrained
unrelated parallel machines. Hsu et al. [33] and Chen and
Kuo [34] tried to find a solution for cost minimization of
machines and allocation, respectively under the given timing



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ... (Regular Paper) 4

and energy usage constraints. Chu et al. proposed a near-
optimal [35] and later an optimal [36] solution to the voltage-
setup problem; their work is the assignment of voltage-levels
to processors with the limitation that each processor assumes
one voltage-level throughout the system lifetime. Luo and
Jha [37] devised both static and dynamic variable voltage
scheduling algorithms to minimize the energy cost of
scheduling dependent periodic and aperiodic tasks on
unrelated parallel machines.

Some studies consider discrete voltage-levels for non-
migratory task, and thus, they use different approaches to
solve a NP-Complete problem. Ding et al. [38] approached
the problem using the ant colony optimization in order to
obtain energy efficient scheduling of partially dependent
tasks on DVS-enabled processors, even with coarse-grained
voltage modes. Lin et al. [39] addressed the problem when
systems in question work on rechargeable batteries. They
solve the problem based on four heuristics including genetic
algorithm and ant colony optimization.

Yang et al. [7] used a fully polynomial-time
approximation scheme for such problems. Yu and Prasanna
[26] approximated the energy efficiency when assigning non-
migratory tasks to DVS-enabled processors. They formulated
the problem as an extended generalized assignment problem
and also hired a heuristic to approximately solve the NP-
Complete problem. They used a model in which the DVS-
enabled machines have discrete voltage-levels, where both
speed and energy usage of machines depend on the voltage-
levels as well as the tasks they are running.

The above studies, although valuable, suffer from at least
one of the following problems: (i) They do not take the
advantages of DVS for runtime energy management into
account [35, 36], (ii) Machine speeds are available in a
continuous spectrum [35, 36, 37], (although power-supply
electronic may provide systems with continuous voltage
spectrum in the future, it is a fact that most of the currently
available DVS-enabled microprocessors (e.g. Trans meta,
Intel, and AMD) use a few discrete voltage-levels [40]), (iii)
Energy usage of a machine depends either only on its
specification (speed and/or workload) or only on the task that
is running, rather than both [35, 36, 37, 38, 34, 7, 39, 33],
and (iv) No task migration is permitted [26, 35, 36, 37, 38,
34,7, 39, 33].

Although task migration in unrelated parallel machines
offers potential energy/performance gains, there are also high
costs and complexities involved in the migration process.
Hence, it has not attracted considerable attention from
researchers. However, according to recent researches
[41, 42, 43, 44], this cost has became reasonable and task
migration in unrelated parallel machines has become a
feasible option. We consider task migration to better utilize
the available heterogeneity of the platform as well as to
achieve better power-performance efficiency.

3. System Model, Problem Definition and
Conceptual Solution®

In this section, we introduce the model of the system. Also,
we present the precise definition of the problem under study
a general view to the solution method.

3.1. Task Model

We consider n periodic tasks shown as the task set T =
{Ty, ..., To}. Each task Tj, i=1,...,n is independent of the other
tasks and is described as (p;,e;), where p; is the task period,
ejis its execution requirements and the respective relative
deadline is again p;. Additionally, there is a dummy task
represented by T, with an execution time and period equal to
the sum of the processor idle times and hyper period
respectively.

3.2. Processor Model

The system consists of m unrelated parallel machines shown
as the set M ={Mm,,..,M,} with no resource contentions.

Machine M;, j=1,...m has k; voltage-levels as
v, :{le,_,,jvjkj}. At the 1™ voltage-level of M;, namely Vj,

I=1,....kj, a maximum speed Sj, (Si; <Siz < <Sy) is
achievable and a maximum power Powy,
(Pow j, < Pow }, <. < Pow ) MaY be consumed. Based on the

characteristics of the running task at voltage-level Vj, the
attainable speed and the respective power usage may be far
less than S; and Pow;), respectively.

3.3. Task-Processor Model

As also indicated in the processor model above, we consider
m unrelated parallel machines (note that uniform and
identical parallel machines are special cases of unrelated
parallel machines). Therefore, each task T;, i=1,...,n if
assigned to a processor M, j=1,...,m which works at the
voltage-level Vy, I=1,..., k;, can be run with a speed of S;;
which certainly is a fraction of S;(0 < S;; < S;;). Meanwhile,
the task-specific power usage of processor M; working at
voltage-level V;j, when task T; is run upon which, will be
Powy;, which again is a fraction of Powj; (0 < Powy; < Powy).
In addition, Powy; is the power usage of processor M; when
it is idle, or equivalently executes the dummy task T,, at
voltage-level Vj. In this regards, if T; runs for duration of
length t on machine M; working at voltage-level Vj, the
energy usage of the task-processor pair in the duration can be
calculated as:

To obtain the task execution times at different voltage-
levels of the unrelated parallel machines, we consider the
following information. Source code of each task is compiled
separately for every supported processor in the set of
unrelated parallel machines. The generated binary codes will
be executed on the corresponding processor, and thus, the
worst-case number of CPU cycles is determined. For each
voltage-level of the DVS-enabled processor, a similar
scenario is followed. For each task, the processor with the
longest execution, which is less than or equal to the task
deadline, will be considered as the base processor. We
consider the execution speed of the base processors as 1 and
execution speed of the task on the other processors are
normalized with respect to this execution time. In our
notation, we refer to the task execution time on base



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 5

processor as task execution time e; in our task model.

Moreover, each task can run on at most one machine at
each instant of time and can arbitrarily migrate across
different machines during its execution. Without loss of
generality in the proposed algorithm, we assume negligible
overheads for task migrations, preemptions, and voltage-
level switches in the current study. By the way, we propose
some techniques which significantly reduce the number of
such events, and thus, reduce the respective overheads.

3.4. Problem Definition

The problem considered in this paper is to schedule a feasible
task set T on a given set of machines M with the goal of
minimizing the power consumption. We need to divide the
task instances (jobs) into job slices. A job slice is defined by
a vector (T;, M;, Vj, ts, t¢), meaning that task T;is scheduled
on machine M; working at voltage-level V; from time t, to
time t. Furthermore, it is considered that [t,,t,)is a period

where the task is executed uninterruptedly, i.e., with no task
migration, preemption, or voltage-level switching during that
period. Equivalently, we use (T,, Mj, Vj, 5, tg) to denote that
M,; is in idle mode in the period of [t_,t;) .

Let define the average system energy usage in a time
interval [a,b) as:

E(a.b) = (ZLoZT:lZLu Pow; Xfm) 2)
’ (b-a)
where fijl <(b—a) is the total length of time during time

interval [a,b) in which task T;runs on machine M; at voltage-

level Vj. The resulting schedule is to minimize the average
system energy usage throughout the system lifetime. This
can be achieved by minimizing the average system energy

usage in a hyperperiod of length H, i.e., (E(0,H)), where the

resulting energy is shown as E(H) This goal can be

min*
achieved by appropriate determination of the job slices along
with the consideration of all other constraints.

3.5. Conceptual Solution

The proposed solution to the defined problem can be

summarized as follows:
1. We first reduce the scheduling problem in a
hyperperiod to scheduling the scaled tasks in Schedule
Periods (SPs) of unit length (defined in Section 4) that is
easier to solve.
2. Then, we model the scheduling problem in the SPs
with Linear Programming (LP). If a solution to this LP
exists, it specifies the required amounts of time that each
task needs to be run at every voltage-level on each
machine. These amounts of execution minimize the
system energy usage in a manner that all deadlines are
met. The algorithm for this step can be independently
used for schedulability test of real-time periodic tasks on
unrelated parallel machines and is explained in detail in
Section 5.1.
3. Tasks are assigned to processors based on the results of
Step 2. An extension to Lemma 2 of [32] is a solution for

task scheduling; such a solution suffers from large
number of preemptions, migrations and voltage-level
switches. Hence, we use this solution only to prove the
existence of a feasible schedule. Instead, we have
proposed a scheduling algorithm which aims to reduce
the number of migrations and preemptions. Our algorithm
is composed of the following steps:
3.1.1 Each SP interval is divided into several time
intervals with different lengths. The procedure to
obtain lengths of these intervals is explained in
Section 5.
3.1.2 For each interval, task to processor assignments
is found by solving a custom model of minimum-cost
network flow problem. This matching is selected in a
way that it leads to significant decrease in the number
of preemptions and migrations in the hyper period.
Procedure from Steps 3.1.1 and 3.1.2 implicitly
prevents the overlaps of execution of segments of a
task on different processors.
3.1.3 Number of migrations, preemptions and
voltage-level switches is further reduced by use of
mirroring technique which discussed in Section 5.2.3.

3.2 Then, the remaining tasks, i.e., non-migratory ones,
are scheduled on the machines. The main point about
scheduling non-migratory tasks is that we are not
concerned about the parallel execution of job slices of a
task. Hence they can be scheduled using an algorithm
such as EDF in the remaining free intervals of the
machines which prevents excessive preemptions and
voltage-level switches. Subsection 5.3 describes this
step, which completes the solution.

4. Schedule
Scheduling

Period and Feasible

To address the aforementioned problem, in this section we
introduce the concept of schedule period, which has been
borrowed from Fluid scheduling method [12] and is used to
convert the scheduling problem into an equivalent but
simpler one. The idea of Fluid scheduling is to execute the
tasks at a constant rate in a way that the tasks execution are
finished exactly at their deadline [12]. In a T-L plane, as
introduced in Section 2, tokens representing the tasks move
over time. The trajectory of such a token during the
execution of the respective task according to its Fluid
schedule is called the task Fluid path.

Therefore, the Fluid path is simply a straight line between
the coordinates (r,e) and (r + p,0) in the respective T-L plane,
where r is the task release time, e is its execution
requirement, and p is the respective relative deadline
(see figure 1). The actual path is the result of concatenation
of execution lines of the task. The slope of each execution
line depends on S;; for task T; when it is running on machine
M; at the voltage-level Vj,. This slope is zero when the task is
not running on any machines.

We define a Schedule Period (SP) as a period between
two arbitrary consecutive task releases in the system.
Scheduling is done on a per SP basis. Consider n tasks
T,.T,,..., T, with their Fluid paths as shown in figure 2. In the

time period between two task releases, namely in SPy (with
start time of s, and finish time of f;), each task T;, according



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ... (Regular Paper) 6

to its Fluid schedule, executes for a certain amount of time,
shown as e*. This piece of a task is called a scaled task. Then
the relative deadlines for the execution of all the scaled tasks
located in SPy are equal to the length of the respective SP
(shown as |SP,| in this case). Accordingly, a new set of

scaled tasks is resulted which we call it scaled task set. Thus,
the scaled task set is shown as {ST,,ST,,..,ST,} with each

scaled task ST; having an execution requirement of eX and all
the scaled tasks having a relative deadline of length|sp, |.

It is proven in Theorem 1 below, which a task set is
schedulable with average energy usage E, if and only if the
respective scaled task set in a SP is schedulable with the
same amount of average energy usage. Therefore, the
problem is reduced to scheduling the scaled tasks in only one
SP. The resulting schedule can then be used to schedule the
scaled tasks in every SP as well as the task set in a hyper
period, and as a result, throughout the system lifetime.

Theorem 1. A periodic task set is schedulable on a set of
unrelated parallel machines with an average energy usage E,
if and only if the respective scaled task set is schedulable in a
SP with the same average energy usage on the same set of
machines.

Proof. Suppose the scaled task set is schedulable in a SP,
namely SPy, with average energy usage E. Consider the tasks
and their Fluid paths as in figure 2. For each task T;, the
slope of its Fluid path is ¢/p; . In the schedule period SPy,

each scaled task ST; has an execution requirement of:

)
o
=] Token representing task T
=3
2 . >
? . )
I3 AN Fluid path
% N
[¢] ~
(<] ~ .
ES So / Actual path traversed in a
8 certain schedule
=
3
(¢
»
>
r D
Time
Figure 1. A sample T-L plane
~ ~
~ ~
~ ~
~ . ~ ~
~ ~
Tl =~ ~ ~ ~
7z ~ ~
g ~ ~
ES = S—7p
u%l Time
- T
; Y
g >
g H Time
= H
o i
2
’ " m
@ >
Time

& = SR |xe,/p; 3)

In this regards, for another schedule period SPy with the
length | sp,. |, we can scale the schedule obtained for SP by
a factor of |SP,. |/|SP, |. Then we obtain a new schedule for

SPy, within which each scaled task S T; has a execution
requirement of eX'as:

[ SP <€/ pi x| SPe I/ SP | =1 SP- [ xe&; / p; “4)

In general, schedule scaling for SP, by a factor of K
means that corresponding to each job  slice
(T, MV, 8+, 8 +t¢) with an average energy usage of

E(s¢ +15,5 +1¢) = Pow; in the primary schedule, there is a job
slice  (T;,M;,V, 8¢ +Kxtg,0 +Kxty) in the scaled schedule

with the average energy usage of
E(se +Kxtg,50 +Kxty)=Pow . Clearly, the average energy

usage does not change for any job slices in the scaled
schedule and all job slices’ lengths are scaled by the same
factor K. Thus, the average energy usage of SP, would be
Edse, fie) =E(se. fi) -

However, this new execution requirement (resulting from
(4)) is the same as the execution requirement for task T; in
the schedule period SPy, i.e., eX. Therefore, to obtain a
schedule for an arbitrary schedule period SP, with length
ISR |, it is sufficient to multiply each job slice in the given

scheduling of SPy by |SP,. |/|SP, |-

SOUII} UOINIIXE Sururewoy

Figure 2. Schedule periods

SO |, UONNOAXF SUIUTBWSY

(b) Time

Figure 3. Relaxing the problem of scheduling in a SP to one hyper period: a) Fluid schedule of periodic tasks in one hyper
period, b) Cumulated execution times of the tasks in the hyper period



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 7

In this way, the task set would be schedulable in all the
SPs. Scheduling the scaled tasks in each SP results in each
scaled task token in the respective T-L plane to meet the
task’s Fluid path at the end of the SP. Since all the scaled
task deadlines are located at the end of their respective SPs,
all deadlines are met by individual scheduling of each SP.
Besides, average energy usage in all the SPs is the same and
equal to E. Thus, the average energy usage in a hyper period
would be the same. Thus, the periodic task set is schedulable
with the average energy usage E.

To prove the theorem in the inverse direction, suppose
the task set is schedulable. Consider the length of the tasks
hyper period is H and the average energy usage is E. In this
regards, task T;is executed H/p, times in the hyper period,

each with the length of e;. Therefore, in each hyper period,
task T; has a cumulative execution requirement of length
H xe;/p; - The problem of scheduling tasks with H xe,/p, ,

i=1,...,n execution requirements, all having a relative
deadline equal to H, is a relaxed version of the original
problem (see figure 3).

In other words, we can scale down the scheduling in a
hyper period by factor |sp, |/H to address the problem of
scheduling the respective scaled task set in SP, for an
arbitrary value of k. The reason is that each task T;
must be executed for |sp, |xe/p; Which is equal to
Hxe/p;x|SP |/H . Besides, the average energy usage

remains equal to E, because scaling a scheduling does not
change its average energy usage. Thus, the proof is complete.

Let E(SP), show the minimum value of the average

energy usage of the scaled task set in a SP that can be
obtained through proper scheduling. Then we have:

Corollary 1.The minimum average energy usage for a set of
periodic tasks on a set of unrelated parallel machines is E if
and only if the minimum average energy usage for
scheduling the corresponding scaled task set in an arbitrary
SP (e.g., SPy) on the same set of machines is E, or

equivalently, E(SP),;, = E(H),yin-

Proof. We use contradiction for the proof. First, consider that
there is a scheduling with an average energy usage E(SP)
(<E(H),,,) for the scaled task set in a SP. However,
according to Theorem 1, we were able to schedule the

periodic task set with the average energy usage E(SP),,,

which is in contradiction to the optimality of E(H),,,.
Similarly, for the inverse direction, consider that there is a
scheduling with average energy usage E(H),,(<E(SP)yin)
for the periodic task set. Again, according to Theorem 1, we
were able to schedule the scaled task set with the average
energy usage E(H),,, in the SP, which is in contradiction to

the optimality of E(SP) .

In the following, we provide a scheduling algorithm for
the scaled task set in a SP of unit length to minimize the
energy usage. Then we use the obtained schedule to construct
a global schedule with minimal average energy usage for the
task set.

min

5. Energy-Optimal Task Scheduling on
Unrelated Parallel Machines

The proposed Energy-Optimal Real-Time Scheduling
Algorithm (EORTSA) has three steps. First, to assure that all
the deadlines can be met and the energy usage is minimized,
we find the required amounts of time that each task needs to
be run on each machine, as well as the length of time that it
needs to spend at each voltage-level on that machine. The
algorithm for this step, explained in detail in Section 5.1, can
be independently used for schedule ability test of real-time
periodic tasks on unrelated parallel machines. Second, we
schedule the tasks which need migration, namely migratory
tasks, on the appropriate machines. The details of this step
are discussed in Section 5.2. Finally, the remaining tasks, i.e.,
non-migratory ones, are scheduled on the machines
determined in the first step, only in the remaining free
intervals of the machines, which completes the solution as
discussed in Section 5.3.

5.1. Schedule Ability Test

In this subsection, we use linear programming to assign the
system tasks to the unrelated parallel machines and set their
speeds in a manner that the average system energy usage is
minimized and all the deadlines are met. This assignment can
then be used as a schedule ability test for the system. Given n
tasks and m machines, the amounts of time that each task T;,
i=1,...,n needs to be run on machine M;, j=1,...m, at
voltage-level Vj, I=1,...,k;, namely tj in a SP of unit length
is derived. The objective function here is to minimize the
average energy usage in a SP, which is equivalent to
minimizing the total energy usages of the machines
(based on Corollary 1). Thus, the optimization problem is
formulated as follows (notice that the length of SP is
considered 1):

Minimize
E =XLCk (Zhy Pow x ;) (5)
Subject to
T YKy s <ty =6 /Py, =10
Zi”:ozriltm =1, j=1..m
ZT=1Z:11tij| <1, i=1,...n
tj 20, i=1,..nj=1.ml=1..k

The first constraint above indicates that the total
normalized execution time of task T; with respect to the
speed levels of the machines at different voltage-levels
should be equal to its normalized expected execution
requirement. The second constraint indicates that the idle
times of machine M; and the total execution time of the job
slices assigned to that machine should be equal to the length
of the respective SP. Also, the third constraint mentions that
the total execution time of task T; on different machines



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ... (Regular Paper)

working at different voltage-levels should not violate the
scaled task deadline, which is again the length of the SP (i.e.,
the task cannot be executed for longer than the SP length).
The last constraint simply indicates that all the times are
nonnegative. Solving this LP problem, the tys, i =1,...,n, j =
1,...m,I=1,... k; are obtained which specify how long each
task T;should be executed on machine M; at voltage-level V;
to minimize the overall system energy usage.

In other words, we model the energy-optimal scheduling
as a LP problem. This LP model could be used as a schedule
ability test as follows. If there is not any solution for
scheduling the given task set on the given set of parallel
machines, then the LP problem does not have any solution.
In addition, it is guaranteed that if the task set is schedulable,
then the LP problem certainly has a solution.

According to the optimization, if there are two voltage-
levels | and I' for machine M; in an order that t,, > oand

tojr >0 while Powy; >Pow;, the energy usage can be
reduced by setting to; to toji +tojr and to; to zero, which has

no effect on the satisfaction of the other constraints.
Applying this method iteratively, we can reach to a situation
in which there are no two voltage-levels for a machine M; so
that ¢, >o0and ty; >0, and therefore, machines use only one

8

voltage-level when they are idle. Example 1 illustrates how
this optimization works.

Example 1: Suppose a machine set M={M;|1<j<4},

where M; and M, have two voltage-levels and the other
machines work in only one voltage-level. The execution
requirements and periods of the tasks of T = {T, |1<i< 7} are

listed in table 1. Given the task power consumptions
(Table 2) and execution speeds (Table 3) on different
voltage-levels, the non-zero variables have been obtained by
solving the LP, as shown in table 4.

Corresponding to each tyy >0 (i>0), we define a task

segment (TS;;) of length t;, with the interpretation that there
is a segment of task Tito be executed upon machine M; at
voltage-level Vj. For the SP under discussion, we divide
these segments into two categories; segments which belong
to the tasks running over more than one machine in that SP,
referred to as segments of migratory tasks, and segments
running over only one machine during the SP, referred to as
segments of non-migratory tasks.

In Sections 5.2 and 5.3, respectively, scheduling of
migratory and non-migratory task segments over the
processors is discussed.

Table 1. Execution requirements and periods of tasks

Task Characteristics T, T, T T4 Ts T T,
E 40 90 40 20 75 8 10
P 40 100 50 25 100 10 12
Table 2. Power usage of different tasks on different voltage-levels
Voltage-level To T, T, T T, Ts T Ty
Vi 1 5 7 2 2 2 3 3
Vi 2 7 9 3 4 4 6 5
Vo 1 2 4 6 3 4 5 3
Vi 1 5 6 2 2 2 1 5
2 1 2 2 2 2 2 4 4
Vi 2 4 5 5 5 3 6 6
Table 3. Execution speed of different tasks on different voltage-levels
Voltage-level T, T, Ts T4 Ts Te T
Vi 1 0.5 1 0.5 0 1 0.5
Vi 2 1 2 1 0 2 1
Vo 0.5 2 0 0 0 2 2
Vi 2 1 0.5 2 2 0 0.5
Vi 0 1 1 0 0 0.5 1
Vi 0 2 2 0 0 1 2

Table 4. List of non-zero variables at optimal poin

Variable Value Type

by 0.16904761 Segment of a migratory task

i 0.4238095 Segment of a migratory task

tazg 0.225 Segment of a migratory task

toar 0.9 Segment of a non- migratory task
tar 0.35 Segment of a migratory task

taa1 0.1 Segment of a migratory task

iz 0.4 Segment of a non- migratory task
{531 0.375 Segment of a non- migratory task
tor 0.4809523 Segment of a migratory task

te21 0.15952380 Segment of a migratory task

{721 0.416 Segment of a non- migratory task



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 9

5.2. Scheduling Migratory Tasks

In this subsection, we discuss the method of scheduling
segments of migratory tasks in a SP of unit length. Without
loss of generality, we perform the scheduling in the interval
[0,1). All the segments of migratory tasks, i.e., TSys should
be scheduled on their corresponding machines (M;) with no
parallel execution of different job slices of the same task.
This scheduling is done through an iterative algorithm,
namely Algorithm 1, as shown in Algorithm 1.

Algorithm 1. Scheduling algorithm for migratory tasks

1 For each tj; ; i=1,...,n;j =1,....m; I=1,.. k;

1.1. if T;is a migratory taskthent'; =t

1.2. else ;=0

2. y=1

3 prevX = 0@

4. nextX = @

5. whiley > 0

5.1. U = {urgenttasks}

5.2. F = {fullmachines}

5.3. if(U+QorF=0)

5.3.1 nextX= matching (prevX)

5.4. determine value of o// o is the time that is scheduled in

this iteration

5.5. for each (Ti, M]-) € nextX

5.5.1 an arbitrary task segment TS;; is scheduled in the interval of
[y-o.7)

552 t'iil = t'iilf ()

5.6. prevX = nextX

5.7. Y=y-0

In the beginning of each iteration, all machines have idle
periods in the range of [0,y). In each iteration, some part of
scheduling is done in the time interval [y — o, y), where the

length of such interval, i.e. o > 0, is specified through the
determination of some task-machine pairs and their
respective voltage-levels. Before going further, we introduce
some notations and terminologies. Having the value of y at
the beginning of an iteration and tj;s as defined in Algorithm
1, we define machine M; as full if

Zinzlzrélti’jl =y (6)

which means machine M; should execute migratory tasks for
all the remaining time and has no other time to be idle or
execute non-migratory tasks during the interval [0,y). We
use F to refer to the set of such full machines. Similarly, we
call a migratory task T; as urgent if

P Z.k:ilt{ju =y (7

namely, task T; should be executed continuously in the
remaining period [0,Y) in order to be completed on time. We
use U to refer to the set of urgent tasks. In each iteration, full
machines and urgent tasks are selected to be scheduled. This
decision is made to prevent unnecessary preemptions and
migrations. For this purpose, in each iteration, we need to
find a bijective function x: D —» R, where D and R are set of
tasks and machines, respectively, satisfying conditions
UcDbDcTand FcRc M . More precisely, y is a matching
that maps each urgent task to a (possibly full) machine and
some other tasks to the remaining full machines.

For each (T,,M;)ey, there is at least one segment of a

migratory task TS;; while ti’jl > 0. This means that task T; still
must be executed on machine M; for some amounts of time.
Our proposed approach for finding the matching will be
discussed in detail in Subsection 5.2.1.

Two approaches are followed in the matching algorithm
to reduce the number of migrations, preemptions, and
voltage-level switches:

1. In each iteration, to find the matching ¥, the algorithm
gets feedback from the task-to-processor assignments of
the previous iteration. In other word, we intend to select
the same edges that have been selected in previous
iteration, or equivalently, assign tasks to the same
processors to which they have been assigned in the
previous iteration. This strategy leads to improvement in
the number of migrations and preemptions as well as
voltage-level switches.
2. We postpone scheduling tasks and processors as late
as their equivalent nodes become critical. In each
iteration, critical nodes must participate in scheduling, or
otherwise, corresponding tasks or processors to critical
nodes cannot satisfy their timing constraints, namely
constraints (5.1) and (5.3). By postponing task
scheduling, idle time segments of processors in schedule
period, which are used to schedule non-migratory tasks,
will connect together, leading to minimum preemption
and voltage-level switches for non-migratory tasks.

The first two lines of Algorithm 1 force the schedule to
be composed exclusively from migratory task segments. In
each iteration, prevX contains the edges from the previous
iteration and nextXholds the current set of edges. Each edge
in the sets indicates the mapping of one task from migratory
task set to one processor from the processor set. At the
beginning of each iteration, current full machines and urgent
tasks is identified. Then, if there is no urgent task or no full
machine, the task to processor assignment is postponed as
late as possible. Otherwise, based on Algorithm 2, a task to
processor assignment with the minimum possible changes
(with respect to the immediate previous iteration) will be
obtained.

After finding y, for each (T;,M;)e y, an arbitrary task

segment TS;; is scheduled in the interval [y -o,y), i.e., task

T; is scheduled on machine M; at voltage-level V; fromy - o
to y. o defines the interval length, and respective procedure
to calculate it is discussed in Section 5.2.2. At the end of
each iteration, we change the remaining range of scheduling
by setting y to y — o; decrement each t'; by o for the
scheduled task segments TSy;s; and replace the set of edges
used in the previous iteration with the set of edges obtained
in the current iteration to determine the matching x in the
next iteration. Iterations will be stopped when y becomes
zero. Based on this approach, we select TSy which was
scheduled in the immediate previous iteration. This strategy
leads to less preemptions, migrations and voltage-level
switches. Next section describes the implementation of the
approach used to find the matching.

52.1. Finding the Tasks to
Assignment in Each Iteration

Machines

To find task to machine assignment (called matching x in



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ... (Regular Paper) 10

Algorithm 1), in each iteration, we define a graph with
m'vertices for full machines and the machines that are
adjacent to urgent tasks and n’ vertices for the urgent tasks
and adjacent tasks to full machines. We refer to the vertices
corresponding to full machines as well as urgent tasks as
critical vertices. In the graph, vertex of each task T, is
adjacent to vertex of machine M; if there is a segment of a
migratory task TSy for some values of 1 while t{;> 0.
Therefore, matching functiony corresponds to a minimum
weighted bipartite matching which covers all critical vertices
on the resulting bipartite graph by using as much edges as
possible from previous iteration matching. Now, we describe
the procedure to find this matching.

First, the adjacency matrix for migratory tasks and
machines is initialized. Using the adjacency matrix, a
bipartite graph is built which its vertices are full machines
and machines which are adjacent to urgent tasks in one part
and urgent tasks and adjacent tasks with full machines at the
other part. Then, in Lines 13 and 14 from Algorithm 2, we
add edges to set E if there is adjacency between the
corresponding vertices. Then a network flow graph will be
built from the bipartite graph. For this purpose, two
additional nodes are inserted in the bipartite graph node set.
The first node, namely the source node will be connected to
all task nodes. Similarly, the second node, i.e. the sink node
will be connected to all processor nodes. Positive supply
value of 1 will be assigned to the nodes which fall in the
category of urgent tasks (supply node).

Also, negative supply value of 1 is assigned to each full
machine nodes (demand nodes). To keep our special
minimum cost network flow model solvable, the sum of
supply and demand flows must remain equal. In this regard,
additional flow, which is equal to the difference of supply
flows and demand flows, will be added to the source or sink
nodes. All arcs have capacity of one except arcs between
source node and urgent task nodes and arcs between full
machine nodes and the sink node, which their capacity is set
to 0. Arcs which are connected to source and sink have the
cost of 1. The costs of other arcs are determined by the
algorithm presented in figure 6.

This algorithm assigns cost a to arcs which are selected in
the previous iteration and have the most importance. It
assigns cost b to second most importance arcs, the arcs for
which one of its adjacent nodes belongs to category of urgent
tasks and the other is a full machine. The costs of all
remaining arcs which have the least importance are set to c.
Although the exact values of a, b, and ¢ depend on the size of
the problem, but the relation a < b < ¢ holds among them.
These values should be selected in such a way that enables
the matching to select as much as possible arcs with higher
priority while finding the minimum total cost. Obviously, it
is possible to leave some arcs with costs of a or b uncovered
in the matching due to the problem constraints which prevent
overlapped execution of difference segments of each task.

As shown in Algorithm 3, cost function is used for
assigning edge cost and is computed according to the set of
input parameters including E, U, F, and prev X. By solving
minimum cost network flow problem, if flow of every urgent
task and full machine nodes are zero, then it represents a
matching that covers all urgent task and all full machine
nodes. Otherwise, in each iteration, flow value of source
node will be incremented by 1 and flow value of sink node

will be decremented by 1. This loop will be terminated by
finding a matching that covers all the full machines and
urgent tasks. In such a matching, flow of every node equals
to zero. Proof of the fact that such matching always exists
and so the loop will be stopped eventually is an extension to
what proposed in [32] and is described below.

Algorithm 2. Matching x

1. Matching x :

2. {

3. Input: prevX

4. Output: X // a set of edges

5. Matrix Tpy, // adjacency matrix where n'and m are the
numbers of migratory tasks and processors

6. If ¥ ;>0 then T(i,j)=1

7. Else T(i,j)=0

8. // create a bipartite graph

9. VT

= {Vr, | Tiisurgenttaskorataskthatadjacenttoatleastonefullmachi
10. VP

= {VPj | pjisfullmachineoraprocessorthatadjacenttoatleastoneur
11. V =VT U VP // a set of vertex
12. E=0 ; // a set of edge
13. ForT, €U
13.1. For all P Processors
. IfT(i,j)=1 thenE = EU {(VTi,Vpi)} and Capacity ((Vr,, Vp,))=1
14. Forp; e F
14.1.  For all T; tasks
. IfT(,j)=1then E = EU{(Vg, ij)} and Capacity((Vr,, ij)):l
15. // convert bipartite graph to network flow
16. V = VU {Vs} U {Vy};// add source and sink nodes to graph
17. Forall Vi, : E=EU{(Vs, Vr)}

17.1. If (V, & U) Capacity(Vs, V) = 1

18.  ForallVp,: E=EU{(Vs,V4)}

18.1. If (Vp, & F) Capacity(Vp,, Vg) = 1

19. // Edge cost definition

20. Assign edge cost / cost function in Algorithm 3

21. IF(Vr, € U) Flow[Vr,]=1

22. IF(Vp, € F) Flow[Vp,]=-1

23. IF(U|> |E]) Flow[V4]=/F|-|U|

24. Else Flow[Vs]=[F|-|U]|

25. E' = 0;// aset of edge

26. while (true)

26.1. E = Solution(Flow,V,E,C) // Solution function returns set of
edges of the minimum cost network flow

26.2.  If ( Vt; € U, exist one edge e:(VTi,ij) €E ) And (Vp; €EF,
exist one edge e:(VT].,VPj) €E)

26.2.1. X={ (Vr,, Vp,) | (Vr,, Vp,) € E'}
26.2.2 Return X
26.3 Else
26.3.1. Flow[Vs]++
26.3.2. Flow[V4]--
27. }
Algorithm 3. Cost Function
1. Cost Function :
2. Input : E, U, F, prevX
3. Output: C[ ] // The matrix C indicates the cost of edges

4. For each (Vr,, Vpi) €E

4.1. If (Vr,, Vp].) € prevX then C(Vr,, ij) =a

4.2. Else if (T; € U) and (P € F) then C(Vr, ,Vp)=b
4.3, Else if (T; € U) then C(VTi,Vpi) =c

44 Else if (P € F) then C(VTi,ij) =c

As we know, a matching which covers all critical vertices
can be obtained through the following steps:

e Find a matching from all urgent tasks to machines,

namely a bijection xp:U - Ry, Ry €M, using standard




The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 11

matching algorithms for bipartite graphs,
e Find a matching from all full machines to tasks,
namely a bijectiony,:F — R, Ry € T, using standard
matching algorithms for bipartite graphs,
e Mixing yr and yy using the algorithm shown in
Algorithm 2 (known as Algorithm 2) to obtain a
matching that covers all critical vertices.

Algorithm 4. Finding xUsingyrand yy

1. X = ¢; // Domain(y) = Range(y) = ¢

2. For each T; eU — Domain(y) — Range(zy )

2.1. Add (T;, 77 (T))) tox

2.2. Remove (y;(T;),X) from xu, if there exists
3. For each (X,Y) e ym

3.1 Add (v,X) tox

It can be shown that for each arbitrary S € U,|N(S)| = |S],
where N(S) is the set of machines, which their corresponding
vertices are neighbors of vertices of S in the bipartite graph.
Thus, Hall’s condition [45] holds and therefore yr and yu
exist. In order to prove that [N(S)| = |S|, we consider the set
of all the remaining parts of task segments TSy, i.e. t'ji, so
thatT; € S. Since each T; € S is urgent, we can conclude:

|S|xy=2res (ZMjEN(S)Zrélti'ﬂ) 3
Also, it is trivial that
2Tes (ZMjeN(S)Zr:jlt{jl) <X enes) Erer 9 ki) )

Considering that no machine can execute tasks with total
execution times greater than y, we can conclude:

ZMJ-eN(S)(ZTieN(N(S))Z:(:jlti,jl)§| N(S)|xy (10)

From (8), (9), and (10), we find that|N(S)| = |S|.

To mix yr and 7y, in each iteration of Line 2 of
Algorithm 4, an urgent task and its paired machine in yr,
namely (T;, z; (T;)) , is added to y, and therefore, T;is added
to Domain(y) and a task will be removed from U—Domain(y)
—Range(yy) for the next iteration of the algorithm. Moreover,
considering a task X, removing (y;(T,),X) from yy, if it

exists, removes X from Range(yy). If X is an urgent task,
anew member is added to U-Domain(y)—Range(yy) for the

Capacity/Cost

Capacity/Cost

next iteration. This ensures that we do not ignore the urgent
task X and thus, this task will be checked in further
iterations.

In Line 3 of Algorithm 4, full machine vertices are
covered either in y or in yy. It can be described as follows:
considering a machine X, if pair (X, Y), where Y is a task, is
removed from yy, a pair (Z, X), where Z is also a task, is
added to y. Furthermore, no urgent task vertex remains
uncovered in y unless it has been covered in yy owing to the
condition of T, eU - Domain(y)-Range(yy) in line 1 of

Algorithm 2. Therefore, through adding task-machine pairs
of yym to x, we can claim that y covers all full machine as well
as all urgent task vertices.

For clarifying the matching algorithm, figure 4 displays
snapshots of execution of matching for Example 1 at the end
of fifth and sixth iterations. Red nodes represent critical
nodes. Each edge is labeled ‘X/Y’ where X and Y denote the
capacity and cost of the edge, respectively. Edges which are
chosen to carry flow are drawn in red. The set of red edges
between machines and tasks, which are passed across an
ellipse as well, compose our desired matching.

As it has shown in figure 4, after selecting the edges
(T4, Py), (T, Py), (Te, Py) as a final solution in iteration 5, the
cost of edges (Ts, Py), (T, Py) has decreased to increase the
probability of their selection in the current iteration. It should
be noted that selecting the edges which were selected in the
previous iteration leads to lower number of preemptions,
migrations and voltage-level switches.

5.2.2. Finding the Value of 8

The remaining part of the scheduling for an iteration of
Algorithm 1 is to specify the length of time in which this part
of scheduling is done. Based on the work in [32], value of 6
is the largest value satisfying the following three conditions:
1. For each assigned task segment TSy, we need to have:

o<ty 1n

This ensures that T; has enough work to be done on M; at
voltage-level V; for ¢ amounts of time in (y — o,y) and
tjj; =0 (12)

holds for all task segments in the next iteration.

Capacity Cost

Capacity Cost

(a) Iteration 5

(b) Iteration 6

Figure 4. Snapshots of matching algorithm (iterations 5 and 6 from example 1)



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ... (Regular Paper) 12

2. For each migratory task T;that have not been mapped,
we need
k .
o<y-XiLi Xl tiiu (13)
This condition ensures that T; remains non-urgent
throughout interval (y — o,y) and

STt <y (14)

holds for T; in the next iteration, i.e., the required amounts of
time for executing the remaining parts of task segments of T;
are available.

3. For each machine M; which have not been allotted,
we need

(15)

k.
c<y—Xisi Xl tin

This ensures that M; remains non-full throughout interval
(y—o,y) and

STt <y (16)

holds for M; in the next iteration, i.e., in the iteration that the
required amounts of time for executing the remaining parts
of segments of migratory tasks on M; are available.

In other word, scaled tasks can be scheduled on the
allocated machines unless one of the following Types of
Changes occurs in the status of the system:

e Type A, shown as A(TS;): A task segment TS;; is

assigned to the proper machine at the proper voltage-level

for the length of t's,

e Type B, shown as B(M;): A machine M; becomes full,

which is equivalent to adding a critical vertex

corresponding to the machine in the bipartite graph,

e Type C, depicted as C(T;): A task T; becomes urgent,

L uope|
9 uopEs|
< uonEs|
 uonEag]

which is equivalent to adding a critical vertex
corresponding to the task in the bipartite graph.

At the end of each iteration of Algorithm 1, at least one
type of the changes occurs. Thus, we need to find a new set
of task segments to be scheduled for the next iteration.

It should be noted that when a change of Type A (e.g., A
(TS;j)) occurs as the sole change at the end of an iteration, if
there is a task segment TSy the previous matching can be
used with only a voltage-level switching, e.g. from Vj to Vjyy,
for the new iteration. Doing so, we can effectively reduce the
number of preemptions. However, if there is no other task
segment TSy, an edge is removed from the bipartite graph
and we need to find a new matching.

When t' is decremented by the amount of ¢ for each
assigned task segment TS;;, it can be concluded for each
migratory task T; that

(17)

m k; ’
20 2, S <t =€

where ej is the remaining execution requirements of task T;
for the next iteration. In addition, with this reduction in the
values of t'ys, it is trivial that (14) also holds for urgent tasks
and (16) holds for full machines. In fact, (12), (14), (16), and
(17) are corresponding to Constraints (5.4), (5.3), (5.2) and
(5.1), respectively. This suggests that, in each iteration, it is
ensured that all corresponding constraints to primitive
constrains on migratory tasks and machines are held. Since at
least a Change of Type A, B or C occurs at the end of each
iteration, Algorithm-I terminates because of finiteness of the
number of thesechanges. Next,in the last iteration, the
remaining execution requirements of each migratory tasks
gets zero. The reason is that, according to (12), (14) and (16),
all tys eventually turn into zero. Thus, it is verified that
Algorithm 1 schedules the segments of migratory tasks in a
proper manner.

A £ uonEL
T uonEs|
| uopE )]

AlT312) AlTs14) c{Ty)
A(Ty34) B{M;) 4

. AT,
AlTga1) B:M]':]’J

l lll

Cit) AlTy12) B(M,)

[

AlT312)
C{Ts)

-Tnz - Tiza D Tr_qi- T:u- T:ﬁl- Tm!- Tex1

Figure 5. Assigning migratory tasks in the boundaries of a SP

15t sp

2nd sp

3rdgp

A
o
A

-Tnz - Ti21 DTl:n- 7312-7'341- Tﬁll- Te21

Figure 6. Migratory task segment placement



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 13

Example 2. After obtaining the task segments in Example 1,
here figure 5 shows how segments of migratory tasks are
assigned to the parallel machines in the boundaries of a SP.
The change types occurring at the end of iterations are also
shown.

5.2.3. Schedule Period Placement

In the next step, we schedule migratory tasks in entire hyper
period. For further improvement in the number of migration
and preemption and voltage-level switches, algorithm 5 as
shown in Algorithm 5 is proposed.

Algorithm 5. Schedule Period Placement

1. SPy: Schedule set for a SP with unit length

2. fori = 1to N // N=number of all SPs in hyperperiod
2.1. if (iis 0dd)

2.1.1. SP; : mirror(SPy)

2.1.2. Scale SPy to SP;

22 else

2.2.1. Scale SPy to SP,

In algorithm 5, SPy is a data structure that holds the
scheduling of migratory tasks. Each SPy object specifies a
processor, an execution interval, and a voltage-level for a
single task. For any schedule period, the proportionally
scaled unit SP is repeated. Function mirror (SP) will reverse
the scheduling order for the given SP and is applied to
schedule periods of odd index which merges free spaces of
adjacent SPs while decreases the number of preemptions and
voltage-level switches for non-migratory tasks. It also makes
the migratory tasks at the end of SP to repeat in the start of
next SP which causes reducing the number of migrations,
preemptions and voltage-level switches. A similar technique
is used in [46] to decrease the number of preemptions.

Example 3: Figure 6 shows the placement of migratory task
segments to the parallel machines after applying the mirror
procedure on the schedule of Example 2.

Briefly, we use the scaled version of the obtained
schedule of a SP of unit length by the factor of | SP, | beside

its mirror to schedule migratory tasks in SPy, and thus,
achieve a feasible scheduling for the migratory tasks in a
hyper period. In this regard, each machine will have some
idle intervals in which some non-migratory tasks can be
scheduled. In the next subsection, we describe the method of
scheduling segments of non-migratory tasks within these idle
intervals. As a matter of fact, it is not vital to schedule
migratory and non-migratory tasks through different
algorithms, or even in different phases like the approach
discussed in [32]. We could use Algorithm 1 to schedule
both migratory and non-migratory tasks simultaneously.
Such possible scheduling suffers from high overhead; hence,
in order to reduce the number of preemptions as well as
voltage-level switches, we schedule segments of non-
migratory tasks separately after all migratory task segments
have been scheduled. More details are presented in the
following section.

5.3. Scheduling Non-Migratory Tasks

The main point about scheduling non-migratory tasks is that

we are not concerned about the parallel execution of job
slices of any such task. In addition, each task segment TS;; of
non-migratory tasks can be executed in SPy during the
machine idle periods for t; x|SR, | after scheduling migratory

tasks, as the LP constrains (Constraint (5.2)). By scheduling
in this way, each task token would meet its fluid path at the
end of each SP, and therefore, no non-migratory task misses
its deadline, i.e. there is a feasible scheduling for them in idle
times of each machine. However, in order to reduce the
number of preemptions and voltage-level switches, we use a
different algorithm for this part. As a result from [53],
algorithms with work-conserving property have the
advantage to avoid unnecessary task preemptions. Hence, we
consider this property for scheduling of non—-migratory tasks
that significantly decreases the number of preemptions and
voltage-level switches. Corresponding to each segment TS;;
of non-migratory tasks, we define a release-based-task-
segment (RBTS;;) with size 1 which indicates the amount of
time that task T; should be executed on machine M; at
voltage-level V; in the task period of length p;, where
7 =tj x p;- We schedule RBTSs per task period instead of

TSs per SP. Also, we use EDF to schedule the RBTSs (i.e.,
for non-migratory tasks) in the idle times throughout each
hyper period. Of course, with employing scheduling
algorithms with lower preemption overheads than EDF (e.g.,
EDZL), it is possible to decrease the number of preemptions
even more. The sum of execution requirements of all RBTSs
of a task T; (RBTSy;) in a period p;is equal to the exact
execution requirements of task T; in the period, i.e. e;.
According to Constraint (5.1), we have

(18)

m k. _
2 20 Sy % Tij =g

Thus, even if the scheduling strategy is changed, it will
not cause any deadline to be missed while the job slices of a
certain task instance are executed within their respective
period (i.e., their relative deadline). Furthermore, according
to the optimality of the EDF algorithm [23], it is
straightforward to show that EDF gives a feasible scheduling
in the idle times of each machine, if such a schedule exists.
In this regard, as the existence of a feasible schedule for the
task set is verified and confirmed in Step 1 of the scheduling
(i.e., through the LP), it would be sufficient to use the EDF
algorithm while considering each RBTS;; as a task with
execution requirement ty; and period p;. In this way, all the
RBTSs, and equivalently, all the non-migratory tasks are
scheduled. It is worthwhile to note how this method of
scheduling results in fewer preemptions and voltage-level
switches: in the case where two RBTSs, namely RBTSy; and
RBTS;; exist for a certain task T; and no new task with an
earlier deadline arrives before the RBTSs deadline, EDF
selects RBTS;j (which has the same deadline as RBTSy;) for
execution instead of random selection among the other
admissible tasks. In this regard, one voltage-level switch
occurs instead of a preemption.

Example 4. As shown in figure 7, RBTSs corresponding to
segments of non-migratory tasks of Example 1 which listed
in table 1, are scheduled after scheduling segments of
migratory tasks in Example 2. Migratory tasks are shown in
gray color, while RBTSs are represented in other colors.



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ... (Regular Paper) 14

15t sp

3rd sp

N
\

2 4

D T721 - Taa1 - T241- Ts31

Figure 7. Complete scheduling schema over SPs

Theorem 2. The Linear Programming (LP) problem
mentioned in Step 1 has a solution with minimal value of E if
and only if the set of unrelated parallel machines has a
feasible scheduling with minimal average energy usage E.

Proof: It is trivial to show that if there is a scheduling for a
task set, the constraints of the LP would be met; therefore,
the LP has a solution with minimal average energy usage E if
there is a feasible scheduling. By Corollary 1, it is inferred
that minimal average energy usage for scheduling the task set
in a hyper period (E(H),, ), and therefore the system

lifetime, is also the minimal average energy usage for
scheduling the scaled task set in a SP of unit length, which is
the minimum value of E in the LP.

To prove the other direction, consider a solution to the
LP. We described how we can use this solution to construct a
schedule for the tasks upon the machines, such that all
deadlines are met. Specifically, for segments of migratory
tasks, we will construct a schedule over the interval [0,1) . By

Theorem 1, a schedule in which all task instance deadlines
are met may be obtained by repeating the scaled versions of
this schedule over all SPs. Then we have scheduled non-
migratory tasks in the remained idle times. It is mentioned
that non-migratory tasks can be scheduled by the EDF
algorithm without missing a deadline.

Scheduling in this manner results in executing each task
segment TS;; (segments of both non-migratory and migratory
tasks) obtained from the LP, for t; xH amounts of time

during a hyper period. Therefore, energy usage of the
scheduling is ExH in a hyper period of length H, which
means the average energy usage of the scheduling in that
period, is equal to E . Furthermore, based on Corollary I,
average energy usage of the system could not be less than the
minimum average energy usage of the scaled task set in a SP
of unit length. Thus, this algorithm gives a scheduling with
the minimum energy usage if the system has a feasible
solution.

6. Discussion

In this section, we first determine the number of migratory
tasks based on some properties of the linear programming,
and then, we specify an upper bound on the number of
preemptions and voltage-level switches.

6.1. Linear Programming and the Degree of
Migration

The cost of migration might be inevitable in some distributed
systems since the whole task state must be migrated as well.

However, the proposed algorithm schedules most tasks on
only one processor, and bounds the number of migratory
tasks. The total number of edges in the bipartite graph at the
first iteration of Algorithm 1 is a measure to find out how
much the schedule is global rather than partitioned (degree of
migration); a schedule in which the number of segments of
migratory tasks is equal to zero is a purely partitioned
schedule [32]. This measure can determine the degree of
migration as discussed in the following.

As shown in [47] and [48], there are polynomial-time
algorithms for solving LPs as well as polynomial-time
algorithms (e.g., see [49]) for obtaining a basic solution,
given a non-basic optimal solution to a LP problem.
Therefore, a basic solution can be obtained in polynomial-
time. Considering a LP with n variables, I inequality
constraints and E equality constraints, the basic solution to
the LP problem lies at a vertex point in which n-E
inequalities satisfy as equalities.

Returning back to our problem, we have

N=(n+D)x3"k (19)
variables and inequalities (Constraint (5.4)) in the LP. Also,
we have n and m equalities for Constraints (5.1) and (5.2),
respectively, and, n inequalities for Constraint (5.3).
However, according to the m equalities for Constraint (5.2),
we can conclude

ern:l (Zin:lzriltm )<m (20)
and thus,
Zin:l (ern:l Zriltm )<m (21)

Consequently, at most m number of the tasks can be
urgent (satisfy inequalities of Constraint (5.3) with equality).
According to the mentioned property of LP, N-n-m
inequalities would be marginally satisfied. As shown above,
at most m inequalities for Constraint (5.3) can satisfy as
equalities. Thus at least N-n—2m of inequalities of Constraint
(5.4) is held in the form of equalities.

This means that there are at most n+2m non-zero
variables at the optimal point. On the other hand, because
each task T; (i > 0) must have at least one non-zero variable
ty for some values of j and 1, we can conclude that n
variables of n+2m non-zero variables belong to different
tasks; therefore, at most 2m extra task segments exists. These
extra segments can result in at most 2m migratory tasks.
Also, there are at most 2m+2m=4m segments of migratory
tasks.



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 15

6.2. Number of Preemptions, Migrations and
Voltage-Level Switches

Regarding the issue that there is no need for voltage-level
switches when a machine is idle (as described in Section 5),
the upper bound on the number of migrations, preemptions
and voltage-level switches can be obtained as follows. The
number of migrations and voltage-level switches for
migratory tasks will be at most equal to the number of
iterations of Algorithm 1 in each machine; because there are
no interruptions in the interval of iteration and the task can
run continuously. The number of iterations of Algorithm 1 is
at most equal to the number of times that one of the change
types A, B, or C occur. There are at most 6m changes,
namely 4m changes of Type A, which is less than the number
of task segments belonging to the migratory tasks, m changes
of Type B, which is less than the number of full machines,
and m changes of Type C, which is less than the number of
urgent tasks.

Therefore, 6m is an upper bound on the number of
migrations and voltage-level switches in a SP for migratory
tasks on each machine, and thus, 6m” is an upper bound for
the entire system model. On the other hand, using the EDF
algorithm, non-migratory tasks will be preempted only when
a change of Types A, B or C occurs or when a new RBTS
arrives or its execution finishes, considering RBTSs as tasks.
We refer to these two latter cases as Change Type D (times
in which changes of Type D occur, are shown in red color in
Algorithm 4). The number of SPs in a hyper period, which is
at most equal to the number of task releases, is

H
ZP:IE (22)

Therefore, the total number of preemptions for all
machines will be equal to the number of Type A, B and C
changes, which is

(6m*)x ZL% (23)

i
plus the number of Type D changes that is

H
2X Y peTs. —
RBT. D

ijl

24

Furthermore, since there are at most 2m extra task
segments (as mentioned above), the number of RBTSs is not
more than n + 2m, and at least one RBTS for each non-
migratory task exists. This means that:

H H H H
Srers. — <3N —+2m— <@m+h)3r,— (25)
RETSn Pi 'p min(p;) ( 2 p;i

Thus, the number of preemptions and voltage-level
switches in a SP wusing the proposed algorithm is
2x(2m+1)+6m? =0(m?) in the average case. This is
independent of n and much fewer than the preemptions in the
available online algorithms, even for identical platforms
where n >» m (e.g. [14]).

7. Experimental Results

This section presents the evaluation results of the proposed
algorithm for synthetic task sets on different configurations
of parallel machines. Since, to the best of our knowledge,
there is no optimal scheduling algorithm for unrelated
parallel machines that support task migration, we compare
EORTSA algorithm with PCG [25] which is introduced for
real-time scheduling on uniform parallel machines.

Most of the optimal scheduling algorithms for
heterogeneous multiprocessors are based on fairness
[25, 32, 50], so the order of the number of preemptions and
migrations of these algorithms is almost the same. These
algorithms proportionally assign processors to the tasks
according to the utilization rates. Among them, PCG is an
optimal scheduling algorithm which is insensitive to the
energy usage. PCG has the least number of migrations and
preemptions in the class of optimal scheduling algorithms in
uniform parallel machines which make it a good choice to
compare with preemptions and migrations of EORTSA. On
the other hand, since EORTSA scheduling algorithm is
optimal regarding the energy usage, we have omitted the
comparison of EORTSA with other existing algorithms
which intend to reduce the energy.

Although the proposed algorithm supports all types of
machines, it was restricted to uniform parallel machines in
experiments. We have considered four uniform parallel
machines with 2, 4, 8 and 16 XScale PX270 processor cores.
Since this processor supports multiple DVS voltage-levels, it
is possible to create a uniform parallel machine consisting of
cores with different execution speed by assigning different
voltage-levels to cores accordingly. We have used data from
table 6 to create such parallel machine in which every core
works at a fixed random voltage and corresponding
frequency. Also, it can be observed from table 6, there is a
linear dependence between the speed and the power,
meaning that by doubling the speed, power consumption will
increase approximately twice.

With such restriction, it is hard to reveal the potentials of
our algorithm in reducing power consumption during the
evaluations. Our algorithm achieves much more energy
saving for unrelated platforms rather than uniform ones, as
power consumption relates to execution speed through a
nonlinear function and is task-dependant. To reflect the
nonlinear relation between power consumption and execution
speed, which is most common in unrelated platforms, a
custom uniform platform with nonlinear power-speed
relation is modeled using the following assumptions:

e Tasks are assumed to have the same functionality but

with different input sets,

e Task execution times are calculated for different

processors and are normalized based on the execution

speed of the slowest processor,

e Task execution time on different processors is based

on E3S benchmark suite [51].

Since we only have one type of the task on the system,
this unrelated platform can be considered as a uniform
platform. Now, PCG algorithm can schedule the tasks in this
new platform. Tables 6 and 7 report the average powers and
relative speeds of some processor cores for different
operating frequencies. Although actual power and relative



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ... (Regular Paper) 16

speed values vary depending on the tasks, these values can
be used as a guideline for our constructed platform.

Linear program and minimum weighted Dbipartite
matching problem (via minimum cost network flow) are
modelled and solved in ILOG Cplex solver [52].

Table 5. Specifications of the Intel XScale PXA270
processor [7] for different speeds

Speed
MHD) 104 | 208 | 312 | 416 | 520 | 624
Normalized | ) § 1 15 2 25 3
speed
Active
power 0.116 | 0.279 | 0.390 | 0.570 | 0.747 | 0.925
(watts)
Idle power | 664 | 0.129 | 0.154 | 0.186 | 0.222 | 0.260
(watts)

Table 6. Speed and power of executing text processing
benchmark on different processors according to E3S
benchmark suites [47]

Active Idle

Processor model Speed power power

(watts) (watts)
AMD ElanSC520-133 MHz 3.0 1.6 0.16

AMD K6-2E 400MHz/ACR 1 10 1

AMD K6-2E+ 500MHz/ACR 1.75 14 14
AMD K6-IITE+ 550MHz/ACR 2 16 1.6
IBM PowerPC 405GP - 266 MHz 1.75 2 0.2
NEC VR5432 - 167 MHz 0.16 2.5 0.25

We conducted several different experiments to evaluate
the average power, number of preemptions and number of
migrations of the above-mentioned scheduling algorithms.

As stated before, the evaluation has been performed on
synthetic task sets. These tasks have been generated
randomly in the following manner. First the utilization value
of each task has been generated randomly such that the
system utilization reaches to a target value determined in the
experiment setup. In order to avoid unaffordable hyper
period length in simulation, we use the following approach
for generating of task periods. First an integer number which
has at least 150 divisors is randomly selected as the hyper
period value. After that, the task period will be chosen from
the set of those divisors. In this way, we have restricted the
periods to integer numbers. And finally the execution time is
calculated using e; = p; X u;.

In each experiment, system utilization has been
considered in the range of 10% to 100% (with step 10%).
Each experiment setup has been repeated 100 times. Then,
the impact of utilization on the performance metrics has been
observed. These performance measures are Average Number
of Migrations and Preemptions per job (ANMP) and the
average energy usage as reported in the other researches in
the literature.

Figure 8 shows ANMP as the vertical axis according to
different system utilizations (horizontal axis). Also in this
figure, the comparison of the number of preemptions and
migrations for different task set sizes (10, 20, 30 and 40) has
been reported. In this figure, when there are 10 tasks in the
system and the utilization is higher than or equal to 60%,
PCG algorithm has less preemptions and migrations than
EORTSA (it is about 33% of EORTSA). In fact, since
EORTSA aims at minimizing the energy, it may lead to
higher ANMP in comparison with non-energy minimizing

and general scheduling algorithms. Consequently, in the
loads near 100% in which the opportunity of saving energy is
limited, EORTSA is less effective than non-energy-
minimizing scheduling algorithms such as PCG. However,
when the number of tasks becomes larger (e.g., 20, 30 or 40),
ANMP of EORTSA decreases. The reason is that with larger
number of tasks, each task most likely has smaller portion in
the total utilization of the system so the chance that it is
preempted or migrated becomes slighter. Consequently, the
performance of EORTSA improves when there are a large
number of tasks in the system.

Another important feature of EORTSA is that it keeps the
number of preemptions and migrations under a fixed bound,
i.e. 0(m?), that only depends on the number of processors in
the system. Figure 8 reveals this fact especially when the
number of tasks increases. In a similar fashion, PCG has
considerable amounts of ANMP (see figure 8(d)). Because it
makes proportional assignments on each schedule period, in
the higher task counts, it encounters many task switches.
Besides, EORTSA schedules RBTSs per task period instead
of task segments per schedule period for non-migratory tasks
and always preserves the number of migratory tasks under
twice the number of processors (2m). Figure 9 shows
comparison of power consumption of scheduled task set for
PCG and our algorithm.

Figure 9 (a) presents power consumption for 4 processors
for different system utilizations. EORTSA consumes less
power at different utilizations than PCG. However, when the
utilization is 100%, there will be no difference between the
power consumption of PCG and EORTSA (because all
processors are always busy at that utilization). For EORTSA,
the maximum power saving in comparison with PCG is
achieved when the utilization is around 30% to 70% (see
figure 9(a)) which was about 60% for utilization 30% and
40%.

In the next experiment (Figure 10), we have considered
different number of processors (2, 8 and 16), and for each
setup, two task set sizes have been considered. Similar to our
discussion for the 4-processor setup, by increasing the
number of tasks, EORTSA outperforms PCG in ANMP.
Figure 9(b) shows the average power consumption of each
experiment for 2, 4, 8 and 16 processors. With the increase of
the number of processors, the gap between EORTSA and
PCG also increase because when EORTSA finds more
opportunities to distribute tasks over the processors, it might
find better options to enhance power consumption of the
tasks.

Further, a version of PCG algorithm for unrelated
platform which is aware of different execution speed of tasks
on different processors has been implemented. The modified
PCG has lower schedule ability bound which is depending on
the underlying platform configuration. The reason of non-
optimal assignment of tasks to processors in this extension of
PCQG is its greedy assignment which is based on local view of
the system.

8. Conclusions and Future Works

In this paper, we have studied the problem of scheduling a
set of periodic real-time tasks on unrelated parallel machines
among which task migration is permitted. Each processor
(machine) in the system has a few discrete speed levels and



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 17

can employ DVS for voltage and speed scaling. At each
voltage-level, the processor has a maximum speed as well as
a maximum power usage. Further, there exist task-processor
specific speeds which are fractions of the maximum speeds
as well as task-processor specific power usages which are
fractions of the mentioned maximum power usages. A
polynomial-time optimal scheduling algorithm is proposed
which feasibly schedules the set of tasks on the machines
while minimizes the overall system energy usage. We
introduce the first part of the algorithm as a schedule
ability test for unrelated platforms. Also, with multiple

improvements the number of task migrations and
preemptions and voltage-level switches are reduced to avoid
extra overheads. It is mentioned that the number of migratory
tasks is at most 2m, where m is the number of processors.
Also, it is shown that the total number of migrations,
preemptions and voltage-level switches in each schedule
period is in the order of O(m?).

As an idea for the further work, we intend to extend our
energy model to include leakage power and consider
overheads of migration, preemption, and voltage level
switches in terms of energy.

W EORTSA-Migration
® EOATSA-Preemption
| PCG-Migration

B PCG-Preemption

ANMIP
=

- o

~

:l”"hlu

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

System Utilzation

B EORTSA-Migration
= EQORTSA-Preemption

14 ® PCG-Migration

([T

100% 90% B80% 70% 60% 50% 40% 30% 20% 10%

System Utilization

® PCG-Preemption

ANMP

-

S

(@ n=10, m=4 (b) n=20, m=4
18 18
m EORTSA-Migration m EORTSA-Migration
16 = EORTSA-Preemption 16 7 # EORTSA-Preemption
14 m PCG-Migration 14 ®PCG-Migration

B PCG-Preemption

ANMIP
[

a L]

~

TR

100% 90% BO0% 70% 60% 50% 40% 30% 20% 10%

System Utilization

(¢) n=30, m=4

B PCG-Preemption

ANMIP®

"

hilill

100% 90% B80% 70% 60% 50% 40% 30% 20% 10%

System Utilization

(d) n=40, m=4

Figure 8. Average Number of preemptions and migrate onsper job for 4 processors

o

Fi

15 |
——PCG

—m—EORTSA
10

Pawer Consumption (Watl)

100% 90% BO% 0% 60% S0%  aA0%  30% 20% 10%

System Utilization

(a) For 4 Processors

——PCG
—#—EORTSA

Power consumption (Watt)

2 4 8 16

processor Count

(b) Average of all of utilization

Figure 9. Power consumption



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ... (Regular Paper) 18

m EORTSA-Migration
® EORTSA-Preemption
B PCG-Migration

B PCG-Preemption

ANMP

b

0

100% 90% BO% 70% 60% 50% 40% 30% 20% 10%
System Utilization

W EORTSA-Migration

= EDRTSA-Presmption

w

B PCG-Migration

™ PCG-Preemption

ANMIP®
w -

(¥

i

100% 90% B80% 70% 60% 50% 40% 30% 20% 10%

System Utilization

(a) n=4, m=2

(b) n=10, m=2

= EORTSA-Migration
= EORTSA-Preemption
B PCG-Migration

W PCG-preemption

ANMP

%]J‘IIIIEL[

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
System Utilization

(¢) n=20,m=8

W EORTSA-Migration
a5 = EORTSA-preemption
W PCG-Migration

= PCG-Preemption

ANMP

=

TRRLELLLI]

100% 90% B0% 70% 60% 50% 40% 30% 20% 10%
System Utifization

(d) n=60,m=8

W EORTSA-Migration
® EORTSA-Preemption
= PCG-Migration

W PCG-presmption

ANMP

i]]]“‘illl

100% 90% 80% 70% B0% 50% 40% 30% 20% 10%

System Utilization

W EORTSA-Migration
u EORTSA-preemption
m PCG-Migration

B PLG-preemplion

ANMP

=]

w

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
Systam Utilization

[T

() n=40,m=16

® n=120,m=16

Figure 10. Number of preemptions and migrations per job for different processor and task count

References

[1] K. K. Rangan, M. D. Powell, G.-Y. Wei, and D. Brooks,
Achieving uniform performance and maximizing throughput
in the presence of heterogeneity, in: High Performance
Computer  Architecture (HPCA), 2011 IEEE 17th
International Symposium on, pp. 3-14, 2011.

[2] U. R. Karpuzcu, B. Greskamp, and J. Torrellas, The
BubbleWrap many-core: popping cores for sequential
acceleration, in: 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 447-458, 2009.

[3] E. Bini, G. Buttazzo, and G. Lipari, Minimizing CPU
energy in real-time systems with discrete speed management,
ACM Transactions on Embedded Computing Systems
(TECS), vol. 8, no. 4, pp. 31, 2009.

[4] M. A. Haque, H. Aydin, and D. Zhu, Energy-aware
Standby-Sparing  Technique for periodic  real-time
applications, in: 29th International Conference on Computer
Design (ICCD), IEEE, pp. 190-197, 2011.

[5] M. Kargahi, and A. Movaghar, Performance optimization
based on analytical modeling in a real-time system
withconstrained time/utility functions, IEEE Transactions on
Computers, vol. 60, no. 8, pp. 1169-1181, 2011.



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 19

[6] J.-J. Chen, A. Schranzhofer, and L. Thiele, Energy
minimization for periodic real-time tasks on heterogeneous
processing units, in: International Symposium on Parallel &
Distributed Processing (IPDPS), pp. 1-12, 2009.

[7] C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele, An
approximation scheme for energy-efficient scheduling of
real-time tasks in heterogeneous multiprocessor systems, in:
Proceedings of the Conference on Design, Automation and
Test in Europe, pp. 694-699, 2009.

[8] A. M. A. Athlon, processor model 6 CPGA data sheet,
On the World Wide Web at http:/www.amd.
com/products/cpg/athlon/techdocs/pdf/24319. pdf, 2001.

[9] Intel Crop, Intel PXA270 processor electrical mechanical,
and thermal specification data sheet, 2004, Available from:
<http://www.phytec.com/pdf/datasheets/PXA270 DS.pdf>.

[10] R. R. Muntz, and E. Coffman, Optimal preemptive
scheduling on two-processor systems, IEEE Transactions on
Computers, vol. 100, pp. 1014-1020, 1969.

[11] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel, Proportionate progress: A notion of fairness in
resource allocation, Algorithmica, vol. 15, no. 6, pp.
600-625, 1996.

[12] P. Holman, and J. H. Anderson, Adapting Pfair
scheduling for symmetric multiprocessors, Journal of
Embedded Computing, vol. 1, no. 4, pp. 543-564, 2005.

[13] M. L. Dertouzos, and A. K. Mok, Multiprocessor online
scheduling of hard-real-time tasks, IEEE Transactions on
Software Engineering, vol. 15, no. 12, pp. 1497-1506, 1989.

[14] H. Cho, B. Ravindran, and E. D. Jensen, An optimal
real-time scheduling algorithm for multiprocessors, in: 27th
IEEE International Real-Time Systems Symposium (RTSS),
pp. 101-110, 2006.

[15] W. Y. Lee, Energy-Saving DVFS Scheduling of
Multiple Periodic Real-Time Tasks on Multi-core
Processors, in: Proceedings of the 13th IEEE/ACM
International Symposium on Distributed Simulation and Real
Time Applications, pp. 216-223, 2009.

[16] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C.
Pang, and T.-W. Kuo, Multiprocessor energy-efficient
scheduling with task migration considerations, in:
Proceedings of the 16th Euromicro Conference on Real-Time
Systems (ECRTS), pp. 101-108, 2004.

[17] J.-J. Chen, and T.-W. Kuo, Multiprocessor energy-
efficient scheduling for real-time tasks with different power
characteristics, in: International Conference on Parallel
Processing (ICPP), pp. 13-20, 2005.

[18] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo, Leakage-aware
energy-efficient scheduling of real-time tasks in
multiprocessor systems, in: Proceedings of the 12th Real-
Time and Embedded Technology and Applications
Symposium, pp. 408-417, 2006.

[19] E. C. Horvath, S. Lam, and R. Sethi, A level algorithm
for preemptive scheduling, Journal of the ACM (JACM), vol.
24, no. 1, pp. 32-43, 1977.

[20] T. Gonzalez, and S. Sahni, Preemptive scheduling of
uniform processor systems, Journal of the ACM (JACM),
vol. 25, no. 1, pp. 92-101, 1978.

[21] D. Hochbaum, and D. Shmoys, A polynomial
approximation scheme for machine scheduling on uniform
processors: using the dual approximation approach, in:
Foundations of Software Technology and Theoretical
Computer Science, pp. 382-393, 1986.

[22] S. K. Baruah, and J. Goossens, Rate-monotonic
scheduling on uniform multiprocessors, IEEE Transactions
on Computers, vol. 52, no. 7, pp. 966-970, 2003.

[23] C.L. Liu, and J. W. Layland, Scheduling algorithms for
multiprogramming in a hard-real-time environment, Journal
of the ACM (JACM), vol. 20, no.1, pp. 46-61, 1973.

[24] S. Funk, J. Goossens, and S. Baruah, Online scheduling
on uniform multiprocessors, in: Proceedings 22nd Real-
Time Systems Symposium (RTSS), pp. 183-192, 2001.

[25] S.-Y. Chen, and C.-W. Hsueh, Optimal dynamic-priority
real-time scheduling algorithms for uniform multiprocessors,
in: Real-Time Systems Symposium (RTSS), pp. 147-156,
2008.

[26] Y. Yu, and V. K. Prasanna, Resource allocation for
independent real-time tasks in heterogeneous systems for
energy minimization, Journal of Information Science and
Engineering, vol. 19, no.3, pp. 433-450, 2003.

[27] J. D. Ullman, NP-complete scheduling problems,
Journal of Computer and System sciences, vol. 10, no. 3, pp.
384-393, 1975 .

[28] J. K. Lenstra, D. B. Shmoys, and E. Tardos,
Approximation algorithms for scheduling unrelated parallel
machines, Mathematical programming, vol. 46, no. 1, pp.
259-271, 1990.

[29] T. Gonzalez, E. L. Lawler, and S. Sahni, Optimal
preemptive scheduling of two unrelated processors, ORSA
Journal on Computing, vol. 2, no. 3, pp. 219-224, 1990.

[30] K. Jansen, and L. Porkolab, Improved approximation
schemes for scheduling unrelated parallel machines,
Mathematics of Operations Research, vol. 26, no. 2, pp.
324-338, 2001.

[31] B. Srivastava, An effective heuristic for minimising
makespan on unrelated parallel machines, Journal of the
Operational Research Society, vol. 49, no. 8, pp. 886-894,
1998.

[32] S. Baruah, Feasibility analysis of preemptive real-time
systems upon heterogeneous multiprocessor platforms, in:
Proceedings of the 25th International Real-Time Systems
Symposium (RTSS), pp. 37-46, 2004.



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ... (Regular Paper) 20

[33] H.-R. Hsu, J.-J. Chen, and T.-W. Kuo, Multiprocessor
synthesis for periodic hard real-time tasks under a given
energy constraint, in: Proceedings of the conference on
Design, automation and test in Europe (DATE), (European
Design and Automation Association, pp. 1061-1066, 2006.

[34] J.-J. Chen, and T.-W. Kuo, Allocation cost minimization
for periodic hard real-time tasks in energy-constrained DVS
systems, in: Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design
(ICCAD), ACM, pp. 255-260, 2006.

[35] T.-Y. Huang, Y.-C. Tsai, and E.-H. Chu, A near-optimal
solution for the heterogeneous multi-processor single-level
voltage setup problem, in: International Parallel and
Distributed Processing Symposium (IPDPS), pp. 1-10, 2007.

[36] E.-H. Chu, T.-Y. Huang, and Y.-C. Tsai, An optimal
solution for the heterogeneous multiprocessor single-level
voltage-setup problem, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 28,
pp. 1705-1718, 2009.

[37] J. Luo, and N. K. Jha, Static and dynamic variable
voltage scheduling algorithms for real-time heterogeneous
distributed embedded systems, in: Proceedings of the 2002
Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 719, 2002.

[38] D. Ding, L. Zhang, and Z. Wei, A novel voltage scaling
algorithm through ant colony optimization for embedded
distributed systems, in: International Conference on
Integration Technology (ICIT), pp. 547-552, 2007.

[39] J. Lin, A. M. Cheng, and R. Kumar, Real-time task
assignment in heterogeneous distributed systems with
rechargeable batteries, in: International Conference on
Advanced Information Networking and Applications
(AINA), pp. 82-89, 2009.

[40] M. Kargahi, and A. Movaghar, Stochastic DVS-based
dynamic power management for soft real-time systems,
Microprocessors and Microsystems, vol. 32, no. 3, pp.
121-144, 2008.

[41] M. DeVuyst, A. Venkat, and D. M. Tullsen, Execution
migration in a heterogeneous-ISA chip multiprocessor, in:
Proceedings of the 17th international conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 261-272, 2012.

[42] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy,
and S. Hahn, Operating system support for overlapping-ISA
heterogeneous multi-core architectures, in: 16th International
Symposium on High Performance Computer Architecture
(HPCA), pp. 1-12, 2010.

[43] V. Nollet, P. Avasare, J.-Y. Mignolet, and D. Verkest,
Low cost task migration initiation in a heterogeneous
mp-soc, in: Proceedings of the International Conference on
Design, Automation and Test in Europe (DATE), pp.
252-253, 2005.

[44] H. Shen, and F. Pétrot, Novel task migration framework
on configurable heterogeneous MPSoC platforms, in:
Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 733-738, 2009.

[45] J. A. Bondy, and U. S. R. Murty, Graph theory with
applications, Elsevier, New York, 1976.

[46] B. Andersson, and E. Tovar, Multiprocessor scheduling
with few preemptions, in: Proceedings of the 12th
International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pp.
322-334, 2006.

[47] N. Karmarkar, A new polynomial-time algorithm for
linear programming, in: Proceedings of the 16th annual
ACM symposium on Theory of computing, pp. 302-311,
1984.

[48] J. Renegar, A polynomial-time algorithm, based on
Newton's method, for linear programming, Mathematical
Programming, vol. 40, no. 1, pp. 59-93, 1988.

[49] A. Schrijver, Theory of linear and integer programming,
John Wiley and Sons, New York, 1986.

[50] S. Funk, and V. Nanadur, LRE-TL: An Optimal
Multiprocessor Scheduling Algorithm for Sporadic Task
Sets, in: 17th International Conference on Real-Time and
Network Systems (RTNS), pp. 159-168, 2009.

[51] R.Dick, Embedded System Synthesis Benchmarks
Suite(E3S), Available from: <http://ziyang.eecs.umich.edu
/~dickrp/e3s/>.

[52] IBM ILOG CPLEX 12.1, User’s Manual, Available
from: <http://www.ilog.com/products/cplex>, 2010.

[53] K. Funaoka, S. Kato, and N. Yamasaki, Work-
conserving optimal real-time scheduling on multiprocessors,
in: Euromicro Conference on Real-Time Systems (ECRTS),
pp. 13-22,2008.

[54] K. Funaoka, S. Kato, and N. Yamasaki, Energy-efficient
optimal real-time scheduling on multiprocessors, in: 11®
International Symposium on Object Oriented Real-Time
Distributed Computing (ISORC), pp. 23-30, 2008.

[55] K. Funaoka, A. Takeda, S. Kato, and N. Yamasaki,
Dynamic voltage and frequency scaling for optimal real-time
scheduling on multiprocessors, in: International Symposium
on Industrial Embedded Systems (SIES), pp. 27-33, 2008.

[56] L. Cucu-Grosjean, and J. Goossens, Exact schedulability
tests for real-time scheduling of periodic tasks on unrelated
multiprocessor platforms, Journal of Systems Architecture,
vol. 57, pp. 561-569, 2011.

[57] T. Megel, R. Sirdey, and V. David, Minimizing task
preemptions and migrations in multiprocessor optimal
real-time schedules, in: 31th Real-Time Systems Symposium
(RTSS), pp. 37-46, 2010.



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016

[58] G. Raravi, B. Andersson, K. Bletsas, and V. Nelis, Task ~ multiprocessors, in: 24th Euromicro Conference

assignment  algorithms

Appendix

two-type  heterogeneous  Real-Time Systems (ECRTS), pp. 34-43, 2012.

List of Symbols
Symbols Present
T Set of all tasks
Ti The i" task in T
pi Period and relative deadline of task T;
Ci Execution requirement of task T;
N Number of tasks
M Set of all machines
M; The j" machine in M
m Number of machines
kj Number of voltage-levels of machine M;
\ Set of all voltage-levels of machine M;
Vi The 1" voltage-level of machine M;
S Maximum speed of machine Mjat voltage-level V;
Pow; Maximum power consumption of machine M; at voltage-level Vj,
To Dummy task; (its execution is equivalent to be idle)
Powy Power consumption of machine M; at voltage-level V; when idle
Sij Speed of machine M; at voltage-level Vj; when it is executing task T; (i> 0)
Powij Power consumption of machine M; at voltage-level Vj when it is executing task T; (i> 0)
Ei(t) Energy consumed by machine M; at voltage-level V; when it is executing task T; (i> 0)for t amount of time
T M.Vt te) A job slice, that means Task T; is scheduled on machine M; at voltage-level Vj in time interval [t_t,)
E(a,b) Minimum average energy usage of M in time interval [a,b)
H Size of a hyper period
%mm Minimum average energy usage of T on M in a hyper period
SP Schedule Period
SPy The k™ SP (the time interval between the k™ and (k + 1)™ task releases)
| SR | Length of SPy
ST Scaled task
ST; Scaled task corresponding to task T;
e Execution time of the scaled task corresponding to task T; in SPy
Sk Start time of SPy
ti Finish time of SPy
E(SP) in Minimum average energy usage of scaled task set corresponding to Tin a SP, on M
Gt The amount of time needed by task T; to be executed on machine M; at voltage-level V;(LP variables)
TSi Task segments corresponding tot;;> Owherei> 0
i Size of non-scheduled part of task segment TS;; throughout Algorithm 1
e' The remaining execution requirement of migratory task T; in the ongoing iteration of Algorithm 1
Y the length of available interval in which the rest of scheduling takes place in each iteration of Algorithm 1
c The length of available interval in which scheduling of current iteration is going to be done in Algorithm 1
F Set of full machines in each iteration of Algorithm 1
U Set of urgent tasks in each iteration of Algorithm 1
X A matching between machines and tasks that covers all urgent task and full machines
xr A matching from all urgent tasks to machines
poYi A matching from all full machines to tasks
Ry The range of yr
Re The range of ym

21

on



M. Gholipour, M. Kargahi, H. Faili, S. Youssefi and H. Ravanbakhsh: An Energy-Optimal Real-Time Scheduling ...

(Regular Paper) 22

Change of Type A A task segment TSy; is assigned to the proper machine at the proper voltage-level for the length of t'
Change of Type B A machine M; becomes full
Change of Type C A task T; becomes urgent
Change of Type D A new RBTS arrives or its execution finishes
A(TSy) A Change of Type A on task segment TSy
B(M)) A Change of Type B on machine M;
C&(T) A Change of Type C on task T;
RBTS;; Released-based task-segment corresponding to task segment TS;;
Tijl The length of RBTSj;
S A set of machines that is used in Algorithm 4
N(S) Set of all neighbours of node S in a graph
prevX Set of selected edges from the previous iteration
nextX Set of edges in current edges
Y Set of urgent tasks
F Set of full machines
Tyxm adjacency matrix where n'and m are the numbers of migratory tasks and processors
VT Set of nodes corresponding to urgent tasks or each task that adjacent to at least one full machine
\43 Set of nodes corresponding to full machines or each machine that adjacent at least one urgent task
Vs Source node
Va Sink node
Mahmood  Gholipour  received his Shahbaz Youssefi received his B.S. degree

Master’s degree in Computer Engineering
from the School of Electrical and Computer
Engineering, University of Tehran. In 2010,
he received hisBachelor’s degree in
Computer Engineering from Arak
University, Arak, Iran.

E-mail: m.gholipour@ut.ac.ir

Mehdi Kargahi received his B.S. degree in
computer engineering from Amir-Kabir
University in 1998 and the M.S. and Ph.D.
degrees in computer engineering from
Sharif University of Technology in 2001
and 2006, respectively. He is currently an

X associate professor in the Department of
Electrlcal and Computer Engineering at University of
Tehran, Iran. He has been a researcher at the Institute for
Studies in Theoretical Physics and Mathematics (IPM) from
2003. His research interests include distributed systems,
performance modeling and dependable real-time systems
E-mail: kargahi@ut.ac.ir.

Heshaam Faili received his B.S. and M.S.
degrees in Software Engineering and his
PhD in Artifical Intelligence from Sharif
University of Technology on 1997, 1999
and 2006 respectively. He joined to the
Artificial Intelligence and Robotic group of
the School of Electrical and Computer
Engineering, University of Tehran at 2008. He is now an
associate professor, and his main research interests include
approximation and randomized algorithms, Al and statistical
approaches, text processing and mining methods.

E-mail: hfaili@ut.ac.ir

in Computer Engineering from the School of
Electrical and Computer Engineering,
| University of Tehran, Iran. He has worked
N on real-time scheduling theory in the
. Dependable Real-Time Systems (DRTS)
Research Laboratory. He is now a researcher

in at the University of Genova, Italy.

E-mail: shahbaz.youssefi@unige.it

Hadi Ravanbakhsh received his B.S.
degree in Computer Engineering from the
Department of Electrical and Computer
Engineering at University of Tehran, Iran.
His project for graduation has been on
energy-aware scheduling of real-time tasks
on unrelated parallel machines which is
done in the Dependable Real-Time Systems (DRTS)
Laboratory. He is now a PhD candidate at Department of
Computer Science, University of Colorado-Boulder.

E-mail: hadi.ravanbakhsh@colorado.edu

Paper Handling Data:

Submitted: 10.11.2016

Received in revised form: 20.12.2016
Accepted: 02.01.2017

Corresponding author: Dr. Mehdi Kargahi,
School of Eectrical and Computer
University of Tehran, Tehran, Iran.

Engineering,

'A complete list of the symbols used throughout this paper is presented in
the appendix at the end of this paper.



~
™

(
I—I -D The CSI Journal on
= Computer

Scienceg Engineering

The CSI Journal on

Computer Science and Engineering
Vol. 13, No. 2, 2016

Pages 23-31

Regular Paper

Taxonomy and Overview of Distributed Malfunction Diagnosis in
Networks of Intelligent Nodes

Behrooz Parhami

Nan Wu

Sixin Tao

Department of Electrical and Computer Engineering, University of California, Santa Barbara, California,
USA

Abstract

Started 50 years ago, the field of (system-level) malfunction diagnosis has expanded immensely and continues to be a very active subfield in
both parallel processing and dependable computing research communities, with much of the new research coming from China and Taiwan in
recent years. This paper represents an attempt to organize the field of research in distributed malfunction diagnosis via an overarching,
descriptive, and consistent taxonomy that not only covers all of the past work, but also foretells of possible future research to fill gaps left by
current results and areas that are just beyond the domains already investigated. The paper is accessible to computer science and engineering
specialists who are new to the field, because it uses analogies to unveil the nature of the research problems and pertinent challenges.

Keywords: Comparison-Based Diagnosis, Diagnosability, Distributed System, Fault Tolerance, Interconnection Network, Malfunction
Diagnosis, MM* Model, Parallel Processing, PMC Model, Self-Diagnosis, System-Level Fault Diagnosis.

1. Introduction

In the freshman seminar “Ten Puzzling Problems in
Computer Engineering,” designed 10 years ago and taught
since by the first author [23] [24], mathematical and logical
puzzles are used to introduce advanced science/technology
topics in a manner understandable to first-year college
students. Two of the seminar’s puzzle types are relevant to
the topic of this paper. One puzzle type places you on a
remote island inhabited by members of two tribes, Truth-
tellers and Liars. Truth-tellers provide the correct answer to
any question, while Liars always give an untruthful answer.
Members of the two tribes recognize each other, but you
have no basis to judge which tribe a particular person
belongs to, except by analyzing answers to questions you
ask. A more advanced version of these puzzles postulates the
tribes Truth-tellers and Randoms (they lie or tell the truth,
completely at random). It turns out that Randoms are more
difficult to deal with, because the consistency of Liars in
providing untruthful answers is actually helpful in making

deductions. The latter version of these puzzles models
diagnosis in a distributed environment: You ask each node to
perform self-diagnosis and report the result to you. A healthy
node gives you a truthful answer about it being healthy,
whereas a malfunctioning node gives you an untrustworthy
answer. Is it possible to deduce which nodes are
malfunctioning based on the responses received? The short
answer is no, if there is no cross-checking of results.

Another puzzle asks you to imagine n people, mostly
medical doctors (MDs), but mixed with a small number of
impostors, sitting at a round table. Each person is told to
interview the person seated to his/her right and render a
judgment on whether that person is an MD or an impostor.
Let’s assume that an MD knows how to question a person to
determine with absolute certainty whether that person is
indeed an MD. The n judgments are given to you and you
must identify the impostors. Clearly, a judgment provided by
an impostor is untrustworthy, much like answers provided by
Randoms in the previous set of puzzles, not only because
s/he does not have the knowledge to judge, but also because



B. Parhami, N. Wu and S. Tao: Taxonomy and Overview of Distributed Malfunction Diagnosis ... (Regular Paper) 24

s/he may actually want to deceive you in order to remain
undetected. This puzzle models the malfunction diagnosis
problem as a directed graph G = (V, E), where vertices in V
are intelligent nodes capable of testing each other and edges
in E define a testing relation, with the directed edge (u, v)
representing node u testing node v.

Five decades ago, this notion was formalized by
Preparata, Metze, and Chien [27] into what has come to be
known as the PMC model of malfunction diagnosis.
Subsequently, Maeng and Malek [19] [20] devised a
different formal model in which diagnosis is based on a
managing unit comparing responses from two other units to
which it is connected, concluding that the two responding
units are healthy if their responses match and at least one of
them malfunctioning otherwise. The model was subsequently
refined and given the name MM* or comparison-based
malfunction diagnosis model. As before, if the test manager
is itself malfunctioning, no reliable conclusion can be
reached.

An unfortunate side effect of the rapid advances in the
field of distributed malfunction diagnosis is the emergence of
a rather non-descriptive, and at times misleading,
terminology. To cite one example, the two terms t/k-
diagnosability and t/s-diagnosability mean different things,
and the distinction of k versus s is lost when the parameters
are replaced with actual numbers in a specific case; e.g., is
5/6 diagnosability of the first kind (t = 5, k = 6) or of the
second kind (t =5, s = 6)? Furthermore, the qualifiers “one-
step,” “sequential,” and “pessimistic,” applied to some kinds
of diagnosis strategies discussed are rather undescriptive.

In this paper, we propose a taxonomy of malfunction
diagnosis methods to facilitate understanding and
contributing new results to the field. As a byproduct of the
taxonomy, we expose certain areas of the field that need to
be studied or explored in greater depth. This is not intended
to be a complete survey of the field, as there have been
literally hundreds of research contributions in the area of
malfunction diagnosis over the past five decades. References
cited are meant to cover pioneering contributions that have
defined the field as a whole or its various sub domains, or
have introduced new concepts, plus a few sources that
support our contention that a new, descriptive nomenclature
and taxonomy is indeed required.

2. What Is Malfunction Diagnosis?

Fault testing and fault diagnosis have been with us for
centuries in connection with gadgets and systems whose
designs are to be verified at the outset and whose correct
functioning must be ascertained in the field as they are put to
use. The term “fault” is a bit overused, as it has been applied
at various levels of a digital system hierarchy, from devices
and circuits to sizable modules incorporating hardware and
software components. Fault testing in circuit and logic entail
different methods than testing of higher-level modules. In
fact, in modern practice, we often don’t care about
diagnosing a fault (identifying its location) within a circuit,
say, a chip. Rather, we perform what is known as a go/no-go
test that merely indicates whether the circuit is usable,
replacing the entire circuit in case of a no-go result.

At the system level, by contrast, we do want to identify
which module is causing problems, so that we can isolate and

eventually repair/replace it. This requires a more elaborate
diagnostic testing, instead of the go/no-go variety. For this
reason, the term “system-level fault diagnosis” has been used
for the latter situation. In the first author’s nearly completed
book on dependable computing [25], the term “malfunction
diagnosis” is used to refer to the context above, avoiding the
overuse of the term “fault” and obviating the need for the
qualifier “system-level.” So, our “malfunction diagnosis” is
“system-level fault diagnosis” in much of the published
literature. This use of malfunction diagnosis is the first
element of our nomenclature and taxonomy.

Let us begin with the basic terminology and assumptions.
We consider a system composed of interconnected,
intelligent modules, where by intelligent we mean modules
with internal processing and decision-making abilities. This
isn’t a restrictive assumption, as modern digital systems are
composed of interconnection of processors, memory
modules, 1/O units, and the like, each having hardware
control for basic functions and software control for functions
that are not speed-critical and/or need flexibility over time.
Each module is assumed to be capable of running a
sophisticated self-test routine, when prompted, and to report
the result to other modules.

3. Reflective vs. Comparative Models

Throughout our discussions, each test is assumed to return a
yes/no value, indicating that all is good (yes =0) or
something is wrong (no=1). If there are q tests, then the
syndrome is a g-bit vector S with S[j] holding the result of
test j. The diagnosis problem is to deduce from the binary
syndrome vector S[l:q] the diagnosis vector D[1:n]
reflecting the health (0) or non-health (1) of each of the n
modules in the system.

In the reflective mode of diagnosis, known in the
literature as the PMC model [27], when a module is
connected to another module, we assume that one is capable
of testing the other one. Actually, not all links may be usable
as testing links and a sub graph of the directed graph
representing the system may be designated as the testing
graph. In fact, the connectivity of the system may be
completely different from the testing graph. It is possible, for
example, for the n nodes to be connected via a bus, so that
each node can potentially test any other one. This situation
can be represented by K, the n-node complete graph,
assuming that the single bus cannot be a source of problems
in testing; that is, it is modeled either as a malfunction-free
system core or a set of n(n - 1) independent directed
channels.

From now on, we focus on the testing graph only and
ignore the fact that there may be other links in the system
besides those used for testing or that the hardware
connectivity may in fact be less dense than the testing graph.
The nature of the test can vary, from significant interaction
of passing back and forth test patterns and test outcomes to
minimal interaction, with one module initiating the test
(perhaps by sending a key or seed value) and the target
module carrying out a self-test routine. The key or seed value
serves to ensure that the test result isn’t a constant that a
malfunctioning module may produce by accident or from a
previously stored result in memory, thus compromising
diagnostic accuracy.



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 25

The abstract reflective testing relationship is shown in
figure 1a, where details of how a test is performed are
suppressed and only the yes/no or 0/1 conclusion from the
test is deemed relevant. The comparative testing relationship
can be abstracted as in figure 1b, where a test manager u and
two participants v and w are involved. The node u initiates
the testing and the nodes v and w respond to it by each
sending a test result to u. If the two test results are identical,
u concludes that all is well, producing the decision 0,
provided u itself is not malfunctioning. Non-matching results
lead to the 1 decision by u. If the manager u is
malfunctioning, then we make no assumption about the
decision it might produce [19] [20].

In the reflective model, the tests correspond to the edges
of the testing graph, one test per edge. Thus, we have |E| = q,
the number of tests. In comparative testing, however, triples
(u, v, w) of nodes correspond to tests, with the triples used
pre-defined as part of the diagnostic scheme. Viewed in this
way, we immediately see that the 2-way and 3-way
relationships of reflective and comparative testing can
readily be generalized to higher-degree collaborative testing,
where clusters of nodes perform intra-cluster testing
according to some local schema and the overall result is
deduced from the collection of cluster-level tests. If clusters
constitute replaceable units within our system, then it does
not matter which nodes within a cluster are malfunctioning.
Those can be diagnosed off-line and the requisite repairs
performed in parallel with a new replacement cluster taking
over.

4. One-Step vs. Multi-Step Diagnosis

Conceptually, the simplest diagnostic scheme is when a
single round of g tests are performed and the resulting binary
syndrome vector S[1:q] is used to deduce which nodes are
healthy and which are malfunctioning. When the information
in the syndrome vector is always enough to do the required
diagnosis for up to t malfunctions, we say that the system is
one-step t-diagnosable. Necessary and sufficient conditions
are known for one-step diagnosability, that is, the mapping of
the syndrome vector S[1:q] into the diagnostic vector D[1:n],
which correctly identifies the health (0) or malfunctioning (1)
status of each unit. Theorem 1 represents an example of
theoretical results that are available for practical use.

Theorem 1. An n-unit system in which no two units test
one another, is 1-step t-diagnosable if and only if each unit is
tested by at least t other units.

If, on the other hand, the syndrome vector isn’t sufficient
for full diagnosis but always leads to the identification of at
least h malfunctioning units, h < m, we say that the system is

I think v is good
=

I think v is bad

(a) Reflective testing (PMC model)

multi-step t-diagnosable, because once the identified
malfunctioning units have been repaired or replaced, the
resulting system, which now has fewer malfunctioning units,
can be subjected to the same process for identifying
additional malfunctions. The extreme case where each
diagnosis step identifies a single malfunctioning unit is
referred to as “sequential diagnosis.” A system is
sequentially diagnosable if there exist a diagnosis strategy for
it that guarantees the identification of at least one
malfunctioning unit in each diagnosis step. Theorem 2
represents an example of theoretical results that are available
with regard to sequential diagnosis, in this case a sufficient
condition for sequential t-diagnosability.

Theorem 2. An n-unit system is sequentially t-
diagnosable if the condition n > 2t + 1 holds. A majority of
the n units being healthy is a sufficient condition, but it may
not be necessary.

5. Sensitivity vs. Specificity of Diagnosis

The terms “sensitivity” and “specificity” are taken from the
medical diagnosis domain. Suppose we have a population of
individuals, mostly healthy but containing some who are
afflicted with a particular disease. A medical test exists for
the disease. The test can identify people afflicted with the
disease (positive indication, or 1) and those not afflicted
(negative indication, or 0), but it has some probability of
yielding a false positive (identifying a healthy person as sick)
and a certain probability of yielding a false negative (missing
the detection of a sick person). Such a test is referred to as
“sensitive” if it has a fairly small false-negative probability,
that is, it detects nearly all sick individuals (Figure 2a). The
test is dubbed “specific” if it has a fairly small false-positive
possibility, that is, only a minute fraction of healthy
individuals will be wrongly diagnosed as having the disease
(Figure 2b).

In the context of studies on malfunction diagnosis, false
negatives have not been allowed so far. Put another way, the
diagnosis outcome can have healthy nodes marked as bad
(this is a safe situation) but no malfunctioning node is
allowed to be misidentified as healthy. However, there is no
fundamental reason for excluding false negatives, if the
system has some built-in malfunction tolerance capability
that allows it to function correctly in the presence of a very
small number of malfunctioning units. Such a system will
use a combination of malfunction masking and malfunction
diagnosis to continue correct operation in the presence of
some malfunctions, aiming to remove malfunctions that put
it over its tolerance capacity.

| think v and w are good
[ —
_
°c>
= = [
I think v or w is bad

(b) Comparative testing (MM* model)

Figure 1. Reflective and comparative testing abstractions



B. Parhami, N. Wu and S. Tao: Taxonomy and Overview of Distributed Malfunction Diagnosis ... (Regular Paper) 26

Sick
Healthy

(a) A highly sensitive test

Sick
Healthy

(b) A highly specific test

Figure 2. Diagnostic sensitivity and specificity

6. Unrestricted VS. Conditional

Malfunction Patterns

If the subset of m malfunctioning units can be arbitrary, the
diagnosis scheme is unrestricted. This is the default
assumption for any diagnosis scheme in which no restriction
is mentioned.

The main kind of conditional diagnosis schemes studied
thus far is when the m malfunctions are restricted not to
include all neighbors of any node. When all neighbors of a
node are malfunctioning, that node becomes isolated from
healthy units and thus cannot be correctly diagnosed. This
isolation poses a problem for the diagnosis algorithms,
effectively restricting t to at most d -1, where d is the
minimum node degree, when no false positives are allowed.
Recently, a stronger restriction, requiring each node to have
at least g good neighbors, has been proposed. The g-good-
neighbor diagnosability schemes requires each node to have
at least g good neighbors, in which case t-diagnosability for
larger values of t can be ensured. The previously-studied
“conditional” diagnosability corresponds to the special
1-good-neighbor case of this more general scheme.

Unrestricted and conditional diagnosabilities can be
combined in many different ways. For example, it is possible
to prove that certain classes of networks are (t + a)-
diagnosable, except when the pattern of malfunctions
belongs to some undesirable class, in which case they
become t-diagnosable. In other words, the absence of the
undesirable malfunction patterns increases the diagnosability
extent by a. An example of such combining is “strong
diagnosability,” where the level of diagnosability rises from t
tot+ 1 (that is, a = 1 in the formulation above) when every
node possesses at least one healthy neighbor.

Again, more general conditions can be entertained. In a
cluster-based hierarchical network, one may postulate that
not all nodes in any given cluster be malfunctioning, that
each cluster remain connected internally, or that at least one
inter-cluster connection remain intact between any two
clusters. The possibilities are quite varied. In general, a
restriction on the malfunction pattern leads to some increase
in the diagnosability extent.

7. Analysis vs. Synthesis Considerations

Diagnosability problems to be solved are of two types:
analyzing diagnosabilities of known networks, and
synthesizing interconnection architectures with desired
diagnosability properties.

Analysis problem 1: Given a syndrome vector S[1:q],
identify a set M that includes the requisite number of

malfunctioning nodes (m, 1, or some other number,
depending on the model used and the diagnostic strategy).
Note that the suspected malfunction set M may be allowed to
include false positives or prohibited from signaling false
negatives.

In the simplest case, polynomial-time algorithms exist
that take the vector S[1:q] and the testing graph as input and
produce the set M when the set is restricted to contain all and
only the m malfunctioning units. Efficient algorithms exist
for certain other cases as well, though the space of
possibilities has not been exhausted at this writing.

Analysis problem 2: Given a testing structure (testing
graph of PMC, 3-groupings for MM*), identify the extent of
diagnosability in the case of one-step, multi-step (including
sequential), and other strategies for various unrestricted and
conditional patterns of malfunctions.

Much work has been done in this area, including the
derivation of diagnosability results for a wide array of known
and newly proposed interconnection networks. The networks
studied include meshes, tori [1], hypercubes [3] [11] [12]
[14] [26] (or its generalizations [34] [36] [38]), k-ary n-cubes
[1], numerous hypercube variants [16], cube-connected
cycles, OTIS or swapped networks (including the biswapped
variant), Cartesian product networks [1], and many other
regular [5] [6] [18] [35] and hierarchical (multi-level)
networks.

Synthesis problem: Given a desired diagnosability extent,
the number of nodes, and other physical attributes, derive a
testing graph that is optimal in some respect.

The synthesis problem is easy when only diagnosability
is of interest, but becomes very challenging (like most
combinatorial optimization problems) when other criteria are
included.

8. How the Taxonomy Is Used

Our taxonomy essentially entails the mentioning of each of
the four parameters t, T,, F,, and F, in the form of t/Ty/F,/F,-
diagnosability. These parameters also contain information
about whether the scheme is one-step or multi-step
(including sequential) and whether it is precise or
pessimistic. This method of specifying a diagnostic scheme,
including incorporation of the maximum number of false
negatives as the last of four parameters is new. Existing
diagnosis schemes do not allow false negatives (the
corresponding number is 0 in our model), but, as mentioned
in Section 5, there is no fundamental reason to exclude them
forever. In the examples that follow, F, = 0 and is thus not
discussed explicitly.

The existing models correspond to the following scheme
with our terminology:



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 27

(a) Precise 1-step 5-diagnosability

(b) Pessimistic 1-step 5-diagnosability, M| =t

(c) Sequential 5-diagnosability

Figure 3. Some commonly studied diagnosis strategies and outcomes

(a) Imprecise 1-step 5-diagnosability

(b) Pessimistic 5-diagnosability, |M| > t

(c) Multi-step 5-diagnosability

Figure 4. Examples of diagnosis strategies allowing false negatives and |[M| possibly going beyond t.

Precise = No false positives allowed, that is, F, = 0

Pessimistic = Up to t — m or s — m (with s > t) false
positives allowed

Example 1 (5/5/0/0-diangnosability): Up to 5
malfunctions are diagnosed with no false positives. This
essentially specifies precise one-step 5-diagnosability with
existing terminology (see figure 3a).

Example 2 (5/5/1/0-diagnosability): Up to 5 malfunctions
are diagnosed, with the malfunctioning units identified to
within a set of 5 units (up to 5 true positives and up to 1 false
positive; see figure 3b).

Example 3 (5/1/0/0-disgnosability): One malfunction is
diagnosed in each step, with no false positives. This
corresponds to sequential 5-diagnosability (Figure 3c).

Example 4 (5/2/0/0-diagnosability): Up to 5 malfunctions
are diagnosed, with the bad units identified in 3 steps (at least
2 true positives and no false negative at each step).

And here are a few examples, not yet studied, that entail
false negatives.

Example 5 (5/5/2/2-diagnosability): Up to 5 malfunctions
are allowed, with three of the malfunctioning units identified
in one step to within a set of 5 units (at least 3 true positives
and up to 2 false negatives; see figure 4a).

Example 6 (5/6/1/0-diagnosability): Up to 5 malfunctions
are diagnosed, with the malfunctioning units identified to
within a set of 6 units (up to one false positive; see
figure 4b).

Example 7 (5/2/1/0-diagnosability): Up to 5 malfunctions
are diagnosed in 3 steps, each step identifying 2 true
positives and up to 1 false positive (Figure 4c).

9. Partial Survey of Prior Work

The references at the end of our paper contain a
representative sample of work in the field of distributed
malfunction diagnosis, both early work laying the
foundations and more recent work developed within a mature
field. It would be instructive to categorize these references
with regard to our taxonomy. Tables 1 and 2 show the results
of classification for reflective (PMC) and comparative
(MM*) models of malfunction diagnosis.

Several patterns emerge from the survey of representative
work reflected in tables 1 and 2. First, the synthesis problem
has not received much attention, particularly within the
comparative diagnosis model. Second, multi-step diagnosis,
which is often a more difficult problem from a theoretical
standpoint, has not been the focus of much work. Studies on
single-step diagnosis are dominant, particularly with
comparative methods. High-specificity diagnosis has
received more attention than low-specificity versions.

It is also evident from tables 1 and 2 that the sensitivity of
diagnosis has been completely ignored (this is why our tables
do not include columns for this attribute).



B. Parhami, N. Wu and S. Tao: Taxonomy and Overview of Distributed Malfunction Diagnosis ... (Regular Paper)

Table 1. Categorization of prior work on reflective malfunction diagnosis (PMC model)

Reference Paper’s Aim Steps Specificity Qualification
Citation Analysis / Synthesis | Single / Multiple | High/Low | Unrestricted / Conditional

[1] Araki & Shibata 2000 Analysis Single Both Unrestricted
[2] Araki & Shibata 2003 Analysis Multiple High Unrestricted
[3] Armstrong & Gray 1981 Analysis Single High Unrestricted
[4] Barsi et al. 1976 Synthesis Both High Unrestricted

[5] G. Y. Chang et al. 2005 Analysis Single Both Unrestricted
[6] G. Y. Chang 2010 Analysis Multiple High Unrestricted

[7] N. W. Chang & Hsieh 2012 Analysis Single High Conditional
[8] Hakimi & Amin 1974 Analysis Single High Unrestricted
[13] Karunathini & Friedman 1979 Analysis Both Low Unrestricted
[14] Kavianpour & Kim 1991 Analysis Single Low Unrestricted
[15] Lai et al. 2005 Analysis Single High Conditional

[16] Lin et al. 2014 Analysis Single High Conditional

[17] Lin et al. 2015 Analysis Single High Conditional

[18] Lin et al. 2016 Analysis Single Low Unrestricted

[26] Peng et al. 2012 Analysis Single High Conditional
[27] Preparata et al. 1967 Analysis Both High Unrestricted
[30] Somani et al. 1987 Synthesis Single High Unrestricted
[31] Somani et al. 1996 Analysis Single Low Unrestricted
[32] Tsai & Chen 2013 Analysis Single Both Unrestricted
[34] M. Xu et al. 2009 Analysis Single High Conditional

[35] L. Xu et al 2016 Analysis Single Both Both
[38] Zhu 2008 Analysis Single High Conditional
[39] Zhu et al. 2014 Analysis Single High Both

Table 2. Categorization of prior work on comparative malfunction diagnosis (MM* model)

Reference Paper’s Aim Steps Specificity Qualification
Citation Analysis / Synthesis | Single / Multiple | High/Low | Unrestricted / Conditional
[5] G. Y. Chang et al. 2005 Analysis Single Both Unrestricted
[10] Hong & Hsieh 2012 Analysis Single High Both
[11] Hsieh & Kao 2013 Analysis Single High Conditional
[12] Hsu et al. 2009 Analysis Single High Conditional
[17] Lin et al. 2015 Analysis Single High Conditional
[19] Maeng & Malek 1981 Analysis Single High Unrestricted
[20] Malek 1980 Analysis Single High Unrestricted
[29] Sengupta & Dabbura 1992 Analysis Single High Unrestricted
[36] Yang 2013 Analysis Single High Conditional
[39] Zhu et al. 2014 Analysis Single High Both
[40] Ziwich & Duarte 2016 Analysis Single High Unrestricted




The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 29

Other areas where there is no work yet include
hierarchical or cluster-based diagnosis.  Numerous
hierarchical or multi-level interconnection schemes have
been proposed based on hypercube [9] and its many variants
[21] [28]. There are also interesting hierarchical
interconnection architectures that are grown from arbitrary
basis topologies. A prime example is the class of swapped or
OTIS networks [22] [37], and their symmetric variants
known as biswapped networks [33], which have been the
subjects of very limited diagnosability studies [32].

10. Conclusion and Future Work

The nomenclature and taxonomy introduced in this paper
puts the field of malfunction diagnosis into a much-needed
order, allowing a uniform formulation of the problems
already explored and the exposure of additional possibilities
not yet investigated. The various diagnostic strategies are
expressed in terms of the four parameters t, T, F,, and F,
that collectively specify not only the extent of diagnosability
but also whether the scheme is 1-step, multi-step, precise, or
pessimistic in the prevailing terminology.

The idea of allowing false positives in the diagnostic
scheme isn’t new, but the explication of the number of false
positives allowed as a model parameter is helpful and
removes some of the ambiguities in the current
nomenclature. False positives aren’t as undesirable as they
once were, given that the steep reduction in hardware cost
makes system down time considerations much more
important than the loss of a healthy unit. In fact, a unit falsely
identified as malfunctioning may only be lost temporarily,
because off-line testing can verify that the unit is in fact
good, allowing it to return to the spare supply. False
negatives, on the other hand are new to our model. The
presence of some malfunctioning units may be tolerated by a
system’s built-in malfunction tolerance, which may include
replicated computation with voting or data replication with
primary and back-up nodes.

We plan to work on further refining this taxonomy as we
discover diagnostic schemes that it does not properly cover
or see the need for additional expressive power as system
complexity and diagnostic strategies evolve.

Appendix

List of Symbols

a Additional diagnosability beyond t under special
circumstances

D Diagnosis binary vector of length n

d Minimum node degree in G

E Set of edges of the testing graph, with |E| > g

Fn Number of false negatives allowed by the testing
strategy

Fp Number of false positives allowed by the testing
strategy

G The testing directed graph, G = (V, E)

g Minimum number of good neighbors for each node
assumed in some conditional models

h Minimum number of malfunctioning units (true

positives) included in M
K Complete graph of n nodes

k Bound on the number of false positives in previous
terminology (our Fy)

M Set of purportedly malfunctioning units returned by
the diagnosis algorithm; M| =T, + F,

m Actual number of malfunctioning units, m <t

n Number of nodes in the network or testing graph
(length of the binary diagnosis vector D[1:n])

q Number of tests performed in one step (length of the
binary syndrome vector S[1:q])

S Syndrome binary vector

S Bound on the size of the returned set M, with s > t

t Upper bound on the number of malfunctioning
nodes

Tp Number of true positives (correctly diagnosed
malfunctioning units) by the testing strategy

u Graph node doing the testing or coordination

\Y Set of system nodes, with [V|=n

% Graph node under test by u

w Second graph node under test by u in the

comparative model

References

[1] T. Araki, and Y. Shibata, "Diagnosability of Networks
Represented by the Cartesian Product,” IEICE Trans.
Fundamentals, vol. E83-A, no. 3, pp. 465-470, 2000.

[2] T. Araki, and Y. Shibata, "(t, k)-Diagnosable System: A
Generalization of the PMC Models,” IEEE Trans.
Computers, vol. 52, no. 7, pp. 971-975, 2003.

[3]1J. R. Armstrong, and F. G. Gray, "Fault Diagnosis in a
Boolean n-Cube Array of Microprocessors,” IEEE Trans.
Computers, vol. 30, no. 8, pp. 587-590, 1981.

[4] F. Barsi, N. Grandoni, and P. Maestrini, "A Theory of
Diagnosability of Digital Systems," IEEE Trans. Computers,
vol. 25, no. 6, pp. 585-593, 1976.

[5]1G.-Y. Chang, G. J. Chang, and G.-H. Chen,
"Diagnosabilities of Regular Networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 16, no. 4, pp. 314-323,
2005.

[6]G. Y. Chang, "(t, k)-Diagnosability for Regular
Networks," IEEE Trans. Computers, vol. 59, no. 9, pp.
1153-1157, 2010.

[7IN. W. Chang, and S. Y. Hsieh, "Conditional
Diagnosability of Augmented Cubes under the PMC Model,"
IEEE Trans. Dependable and Secure Computing, vol. 9, no.
1, pp. 46-60, 2012.

[8]1 S. L. Hakimi, and A. T. Amin, "Characterization of
Connection Assignment of Diagnosable Systems,” IEEE
Trans. Computers, vol. 23, no. 1, pp. 86-88, 1974.

[91J. P.
Supercomputers,”
1829-1841, 1989.

Hayes, and T. Mudge, "Hypercube
Proc. IEEE, vol. 77, no. 12, pp.



B. Parhami, N. Wu and S. Tao: Taxonomy and Overview of Distributed Malfunction Diagnosis ... (Regular Paper) 30

[10] W. S. Hong, and S. Y. Hsieh, "Strong Diagnosability
and Conditional Diagnosability of Augmented Cubes under
the Comparison Diagnosis Model," IEEE Trans. Reliability,
vol. 61, no. 1, pp. 140-148, 2012.

[11]S. Y. Hsieh, and C. Y. Kao, "The Conditional
Diagnosability of k-ary n-cubes under the Comparison
Diagnosis Model," IEEE Trans. Computers, vol. 62, no. 4,
pp. 839-843, 2013.

[12] G. H. Hsu, C. F. Chiang, L. M. Shih, L. H. Hsu, and
J. J. Tan, "Conditional Diagnosability of Hypercubes under
the Comparison Diagnosis Model," J. Systems Architecture,
vol. 55, no. 2, pp. 140-146, 2009.

[13] S. Karunanithi, and A. D. Friedman, "Analysis of
Digital Systems Using a New Measure of System
Diagnosis,” IEEE Trans. Computers, vol. 28, no. 2, pp.
121-133, 1979.

[14] A. Kavianpour, and K. H. Kim, "Diagnosabilities of
Hypercubes under the Pessimistic One-Step Diagnosis
Strategy" IEEE Trans. Computers, vol. 40, no. 2, pp.
232-237, 1991.

[15] P. L. Lai, J. J. Tan, C. P. Chang, and L. H. Hsu,
"Conditional ~ Diagnosability =~ Measures  for  Large
Multiprocessor System," IEEE Trans. Computers, vol. 54,
no. 2, pp. 165-175, 2005.

[16] L. Lin, S. Zhou, L. Xu, and D. Wang, "Conditional
Diagnosability of Arrangement Graphs under the PMC
Model," Theoretical Computer Science, vol. 548, pp. 79-97,
2014.

[171 L. Lin, L. Xu, D. Wang, and S. Zhou, "The g-Good-
Neighbor Conditional Diagnosability of Arrangement
Graphs," IEEE Trans. Dependable and Secure Computing,
December 2015.

[18] L. Lin, L. Xu, S. Zhou, and S. Y. Hsieh, "The t/k-
Diagnosability for Regular Networks,” IEEE Trans.
Computers, vol. 65, no. 10, pp. 3157-3170, 2016.

[19] J. Maeng, and M. Malek, "A Comparison Connection
Assignment for Self-Diagnosis of Multiprocessor Systems,"
Proc. 11th Int’l Symp. Fault-Tolerant Computing, 1981, pp.
173-175.

[20] M. Malek, "A Comparison Connection Assignment for
Diagnosis of Multiprocessor Systems," Proc. 7th Symp.
Computer Architecture, pp. 31-36, 1980.

[21] B. Parhami, Introduction to Parallel
Algorithms and Architectures, Plenum, 1999.

Processing:

[22] B. Parhami, "Swapped Interconnection Networks:
Topological, Performance, and Robustness Attributes,”" J.
Parallel and Distributed Computing, vol. 65, no. 11, pp.
1443-1452, 2005.

[23] B. Parhami, "A Puzzle-Based Seminar for Computer
Engineering Freshmen," Computer Science Education, vol.
18, no. 4, pp. 261-277, 2008.

[24]1 B. Parhami, "Motivating Computer Engineering
Freshmen Through Mathematical and Logical Puzzles,”
IEEE Trans. Education, vol. 52, no. 3, pp. 360-364, 2009.

[25] B. Parhami, Dependable Computing: A Multi-Level
Approach, graduate-level textbook in development, available
on-line at;  http://www.ece.ucsh.edu/~parhami/text_dep_
comp.htm.

[26] S.-L. Peng, C.-K. Lin, J. J. M. Tan, and L.-H. Hsu, "The
g-Good-Neighbor Conditional Diagnosability of Hypercube
under PMC Model," Applied Mathematics and Computation,
vol. 218, pp. 10406-10412, 2012.

[27] F. P. Preparata, G. Metze, and R. T. Chien, R. T., "On
the Connection Assignment Problem of Diagnosable
Systems," IEEE Trans. Electronic Computers, vol. 16, no. 6,
pp. 848-854, 1967.

[28] F. P. Preparata, and J. Vuillemin, "The Cube-Connected
Cycles: A Versatile Network for Parallel Computation,"”
Communications of the ACM, vol. 24, no. 5, pp. 300-309,
1981.

[29] A. Sengupta, and A. T. Dahbura, "On Self-Diagnosable
Multiprocessor Systems: Diagnosis by the Comparison
Approach," IEEE Trans. Computers, vol. 41, no. 11, pp.
1386-1396, 1992.

[30] A. K. Somani, V. K. Agarwal, and D. Avis, "A
Generalized Theory for System Level Diagnosis," IEEE
Trans. Computers, vol. 36, pp. 538-546, 1987.

[31] A. K. Somani, and O. Peleg, "On Diagnosability of
Large Fault Sets in Regular Topology-Based Computer
Systems,” IEEE Trans. Computers, vol. 45, no. 8, pp.
892-903, 1996.

[32] C.-H. Tsai, and J.-C. Chen, "Fault Isolation and
Identification in General Biswapped Networks under the
PMC Diagnostic Model," Theoretical Computer Science, vol.
501, pp. 62-71, 2013.

[33] W. J. Xiao, B. Parhami, W. D. Chen, M. X. He, and
W. H. Wei "Fully Symmetric Swapped Networks Based on
Bipartite Cluster Connectivity," Information Processing
Letters, vol. 110, no. 6, pp. 211-215, 2010.

[34] M. Xu, K. Thulasiraman, and X. D. Hu, "Conditional
Diagnosability of Matching Composition Networks under the
PMC Model," IEEE Trans. Circuits and Systems 11, vol. 56,
no. 11, pp. 875-879, 20009.

[35] L. Xu, L. Lin, S. Zhu, and S.-Y. Hsieh, "The Extra
Connectivity, Extra Conditional Diagnosability, and t/m-
Diagnosability of Arrangement Graphs,” IEEE Trans.
Reliability, vol. 65, no. 3, pp. 1248-1262, September 2016.



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016

[36] M. C. Yang, "Conditional Diagnosability of Matching
Composition Networks under the MM= Model," Information
Sciences, vol. 233, pp. 230-243, 2013.

[37]1F. Zane, P. Marchand, R. Paturi, and S. Esener,
"Scalable Network Architectures Using the Optical
Transpose Interconnection System (OTIS)," J. Parallel and
Distributed Computing, vol. 60, no. 5, pp. 521-538, 2000.

[38] Q. Zhu, "On Conditional Diagnosability and Reliability
of the BC Networks," J. Supercomputing, vol. 45, no. 2, pp.
173-184, 2008.

[39]Q. Zhu, G. Guo, and D. Wang, "Relating
Diagnosability, Strong Diagnosability and Conditional
Diagnosability of Strong Networks,” IEEE Trans.
Computers, vol. 63, no. 7, pp. 1847-1851, 2014.

[40] R. P. Ziwich, and E. P. Duarte, "A Nearly Optimal
Comparison-Based Diagnosis Algorithm for Systems of
Arbitrary Topology," IEEE Trans. Parallel and Distributed
Systems, vol. 27, no. 11, pp. 3131-3143, November 2016.

Behrooz Parhami (PhD, UCLA 1973) is
Professor of Electrical and Computer
Engineering, and former Associate Dean
for Academic Personnel, College of
Engineering, at University of California,
Santa Barbara, where he teaches and does
research in computer arithmetic, parallel
processing, and dependable computing. A Life Fellow of
IEEE, a Fellow of IET and British Computer Society, and
recipient of several other awards (including a most-cited
paper award from J. Parallel & Distributed Computing), he
has written six textbooks and more than 290 peer-reviewed
technical papers. Professionally, he serves on journal
editorial boards and conference program committees and is
also active in technical consulting.

E-mail: parhami@ece.ucsb.edu

Nan Wu is a doctoral student in Computer
Engineering at Department of Electrical
and Computer Engineering, University of
California, Santa Barbara. Born in 1994,
she received a BE degree in electronics
engineering from Tsinghua University,
Beijing, China, in 2016. Her research
interests include applications of emerging technologies and
spiking neural networks.

E-mail: nanwu@umail.ucsh.edu

Sixin Tao is a master’s student in Computer
Engineering at Department of Electrical and
Computer  Engineering, University  of
California, Santa Barbara. Born in
1992 in Jiangsu Province,  she received a
Bachelor of Engineering degree from
College of Automation Engineering,
Nanjing University of Aeronautics and Astronautics, China,
in 2015.

E-mail: sixin@umail.ucsb.edu

31

Paper Handling Data:

Submitted: 28.11.2016

Received in revised form: 16.12.2016
Accepted: 02.01.2017

Corresponding author: Prof. Behrooz Parhami,

Department of Electrical and Computer Engineering,
University of California, Santa Barbara, California,

USA.




~
™

(
I—I -D The CSI Journal on
= Computer

Scienceg Engineering

The CSI Journal on

Computer Science and Engineering
Vol. 13, No. 2, 2016

Pages 32-41

Regular Paper

Exploring Reconfigurability Options Among Decimal Adders

Samaneh Emami

Mehdi Sedighi

Computer Engineering and Information Technology Department, Amirkabir University of Technology,
Tehran, Iran

Abstract

Decimal arithmetic has become a hot research topic in recent years. Many hardware units have been designed and proposed to perform high
performance and accurate decimal arithmetic operations. Traditionally, decimal arithmetic units have been designed as application-specific
specialized hardware modules. But there is an emerging trend towards the design and implementation of reconfigurable structures to perform
decimal arithmetic. This paper contributes to this trend by exploring different reconfigurability options in decimal adders, proposing new
reconfigurable parallel prefix trees (PPTs), and presenting a reconfigurable combined binary/decimal adder with a variable input width. Our
analysis shows that it is possible to combine two conventional PPTs to reach a reconfigurable version with a reasonable overhead.
Furthermore, we will suggest two criteria for choosing which PPTs to combine and will compare these two criteria. Experimental results
demonstrate that the reconfigurability in the proposed designs comes at the cost of at most 5% overhead in area.

Keywords: Decimal Arithmetic, Parallel Prefix Tree, Decimal Adder, Reconfigurable Hardware, Granularity.

1. Introduction

Human beings have traditionally used decimal arithmetic
probably because of having ten fingers. As such, using
decimal arithmetic appeared to be the natural choice for the
first generation of computers such as ENIAC [1], UNIVAC
[2], and IBM 650 [3]. Over time, however, the decimal
arithmetic modules were gradually replaced by their easier-
to-implement binary counterparts to the extent that binary
arithmetic became the prevailing choice for designers of
computer systems. But there is growing evidence that
decimal arithmetic is emerging again in the modern
computers. For instance, modern processors like IBM Power
and System z processors [4-7] have specialized decimal
hardware units.

One of the main reasons for the resurgence of decimal
arithmetic is its accurate representation of decimal floating
point (DFP) numbers. In contrast, a major problem of binary
arithmetic is its inaccuracy in representing some non-integer
numbers such as 0.1 that can cause unacceptable errors in
financial and commercial applications. For instance, it has

been reported that in a large telephone billing system, using
binary arithmetic instead of decimal can result in an
estimated annual loss of up to five million dollars [8]. It is
safe to say that the lower precision of binary arithmetic in
certain applications has become an inhibiting factor in
modern computers that handle those applications.

A good evidence for the increasing importance of
decimal arithmetic in recent years is that the IEEE 754-2008
standard for floating-point arithmetic [9] includes
specifications for handling decimal floating-point numbers.
In this standard, two decimal number formats for both
software and hardware implementations of decimal
arithmetic are presented:

Binary Integer Decimal (BID) is proposed for software
implementations of decimal arithmetic and is used in IBM
dec Floats modules [10], Intel DFP Math Library [11], and
built-in GCC DFP types [12]. These implementations can
eliminate the inaccurate representation errors, but they are
usually slow and inefficient [13].

Densely Packed Decimal (DPD) is recommended for
hardware implementations of decimal arithmetic and is used



S. Emami and M. Sedighi: Exploring Reconfigurability Options Among Decimal Adders (Regular Paper) 33

in machines that have dedicated decimal hardware units, like
IBM Power and System 2z processors [4-7]. These
implementations usually provide both accuracy and
performance [14]. Additionally, the dramatic increase in chip
density has lowered the overall cost of hardware
implementations. Consequently, hardware solutions are
gaining prominence in industry [15].

There is also a recent trend toward the design and
implementation of reconfigurable arithmetic hardware units.
Traditionally, the reconfigurable platforms have been fine-
grain modules found in commercial Field Programmable
Gate Arrays (FPGA). Fine-grain modules can address bit-
level granularity, but generally suffer from high
reconfiguration overheads. The ultimate design goal would
be to achieve an ASIC-like performance and FPGA-like
flexibility, design time and cost. Therefore, the coarse-grain
reconfigurable units appear to be a promising compromise
between ASIC and FPGA.

While there are numerous studies on various hardware
implementations of decimal arithmetic operations [16-21],
there are only a few works that focus on the reconfigurebility
aspects of designing such hardware. This paper explores
different reconfigurability options and possibilities in
decimal adders. To do so, the idea of combining existing
conventional Parallel Prefix Trees (PPTs) will be considered

first. As will be elaborated in detail, it is possible to combine

two conventional PPTs to reach a reconfigurable version
with a reasonable overhead. In doing so, one has to choose
the original PPTs carefully in order to achieve low latency

and area overheads. As such, we will suggest two criteria for

choosing which PPTs to combine and will compare these two
criteria. Some new reconfigurable PPTs will be introduced
based on these criteria. Another aspect of reconfigurability
can be in the form of varying input size and type. So a
reconfigurable combined binary/decimal adder with a
variable input width will be justified and presented
subsequently.

The remainder of this paper is organized as follows:
Section 2 provides a review of the literature in this field.
Section 3 discusses the proposed reconfigurable architectures
in detail. Synthesis results and their analysis are provided in
Section 4. The paper is concluded in Section 5.

2. Prior Works

There are numerous studies on various implementations of
basic arithmetic operations such as addition, subtraction,
multiplication, and division. Among these studies, some
focus on optimized but inflexible decimal hardware
implementations [19-21] and some present decimal
arithmetic units with some degree of flexibility [22-27]. For
instance, some researchers have focused on efficient
implementations of decimal arithmetic operations on
reconfigurable architectures such as FPGAs. This is because
the FPGA implementation can provide an added flexibility in
terms of compliance with various standards and the desired
objective that the implemented design is trying to reach.
Nannarelli [22], for example, has studied FPGA-based
acceleration of decimal arithmetic operations.

This study shows that applications requiring decimal
operations can be expedited by an arithmetic processor

implemented on an FPGA board that connects to a computer.
This processor ran a telephone billing application and
achieved a speed-up of around 10 over its execution on the
CPU of the host computer. This achievement is mainly due
to more flexibility in the FPGA implementation with respect
to ASIC design. Vazquez and Dine chin [23] have also
presented a new method for fast implementation of multi-
operand decimal addition in current FPGAs. This method is
based on pre- and post-corrections of the binary sum. With
the pre-corrections, the hexadecimal carries correctly serve
as decimal carries, which brings about the opportunity to
utilize built-in carry chain in FPGAs. As a result, the authors
have reported that their implementation on a Virtex-6 FPGA
device halves the area and latency of previous reconfigurable
implementations [24].

There are other works that propose reconfigurable
architectures for efficient implementation of decimal
arithmetic. Such architectures may have an inherent
flexibility in terms of the input format and width, or
operands’ radices and implementation. Combined
binary/decimal arithmetic circuits can also be included in this
category. For example, Calderon et al. [25] have proposed a
new adder/sub tractor unit. Their implementation can operate
on sign-magnitude, unsigned, and different complement
representations. Another similar work [26] presented a novel
combined adder/sub tractor arithmetic unit for binary, BCD
(Binary Coded Decimal), and single precision BFP (Binary
Floating Point) representations.

Another example for a fully reconfigurable architecture
specialized for efficient implementation of binary arithmetic
can be found in [27]. This work employs Coarse Grain
Reconfigurable Architectures (CGRAs) which are a
compromise between ASICs and FPGAs since they provide
better computational efficiency compared to FPGAs and
better engineering efficiency compared to ASICs. The
CGRA fabric introduced, called Dynamically Reconfigurable
Resource Array (DRRA), is a parallel digital signal
processing fabric with distributed arithmetic, logic,
interconnect and control resources.

Overall, one can safely say that reconfigurability in
arithmetic circuits may take different forms and shapes. The
previous works have considered some of them. But there is
still room to explore other aspects of reconfigurability such
as hybrid adders that implement more than one Parallel
Prefix Tree (PPT) depending on their configuration, or a
combination of binary and decimal addition with variable
width. These ideas will be discussed in the next section.

3. Proposed Architectures

Addition is a very basic arithmetic operation. Fast adders are
needed in virtually any digital system. They are also
necessary in other arithmetic operations like multiplication.
The speed of an adder is usually governed by its ability to
quickly handle the carry chain. A common structure for fast
computation of the carry signal is called a Parallel Prefix
Tree (PPT). Six conventional PPTs have been introduced in
the past [28-33]. These PPTs differ in terms of critical path
delay, area, fan-out, wiring tracks, and number of levels
(or tree depth). That is why each one may be appropriate in
some applications and inappropriate in others. However,
there are applications in which two or more of these



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 34

conventional PPTs might be helpful or necessary. In such
applications it will be beneficial to have a hybrid
reconfigurable PPT that provides the advantages of more
than one PPT but at the cost of one single hardware. This
idea will be discussed later in this paper.

In all binary PPTs, the inputs are calculated from
pi(=xi+y;) andg(=x.y,), where x;and y; are two
corresponding bits of addend and augend. Also, every node
of the tree presents carry propagation (P) and carry
generation (G) signals. The implementation of each node in
the PPTs is shown in figure 1. At the lowest level of trees,
carry of each position is ready to be added to the partial sum
in order to produce the final result.

(G”,P") (G"P)

(GP)

Figure 1. Implementation of a node in decimal PPTs

The implementation of a decimal PPT is similar to its
binary counterpart, but its inputs, called P,and G;, are
calculated using the following equations, where p! and g} are
the corresponding binary propagate and generate signals:

3..,2.,1..0

P = pipipipi
1)

Gi =g} +gfp] +glpip} +gpipip}

The notion of reconfigurability in adders can take many
different forms. In the next subsections, two of these various
forms and possibilities will be explored: the prospect of
combining two existing PPTs to form a new hybrid PPT that
can be reconfigured into either of its two parent PPTs
whereby providing their advantages albeit with some
overhead; and the possibility of having a binary/decimal
adder with a configurable input width.

3.1. Proposed Reconfigurable PPTs

The proposed reconfigurable PPT in this section can
implement two different types of conventional PPTs such as
Brent-Kung and Han-Carlson. The first question in designing
such a hybrid PPT, is which two PPTs may be combined
efficiently well to compensate for the inevitable
reconfiguration cost. The preliminary answer to this question
might be that trees with equal number of nodes appear to be
suitable candidates. To explore this point, Ladner-Fischer
(L-F) and Han-Carlson (H-C) trees were considered.

The implementations of L-F and H-C PPTs for 16-bit
inputs with four and five levels are shown in figures 2 and 3,
respectively. The gray nodes in both figures have the same
inputs. These nodes can be shared easily in the hybrid PPT.
The white nodes (in figure 2) and black nodes (in figure 3)
have differing nodes in the two PPTs.

As the first step, a combined PPT with the same number
of nodes as the original L-F and H-C trees was formed. This
tree is depicted in figure 4. As this figure shows, the gray

nodes require no changes in the data path. However, the
white and black nodes need multiplexers to configure their
varying data path according to the desired configuration.
Needless to say, the multiplexers’ selector signals determine
which PPT is selected but for simplicity, they are not shown
in the figure. Another important point in this figure is that the
number of levels in the combined PPT is the same as the PPT
with the higher number of levels. In this case, since H-C tree
has 5 levels, the combined version also has 5 levels.

Multiplexers usually have considerable area and delay
overheads. If they are implemented using complex gates
(as opposed to transmission gates), their area and delay can
even be more than a cell in the tree. So it seems plausible to
assume that if redundant nodes are used instead of a shared
node and multiplexer(s), the overall delay and area overhead
would be smaller. As such, in the second step, the common
nodes with same inputs (gray) remain intact. But the
differing nodes are placed twice in the reconfigurable design.
The resulting structure is shown in figure 5. In this figure, the
gray nodes are shared between two PPTs whereas white and
black nodes correspond to L-F and H-C PPT’s, respectively.
Notice that the redundant nodes are marked by the same
numbers and only one of them is activated in each
configuration.

The usage of redundant nodes in the PPT shown in figure
5 eliminates the need for the multiplexers whereby
improving the area and delay of the reconfigurable PPT, as
will be shown in Section 4. However, to explore the effect of
structural matching between the original PPTs on the
characteristics of the reconfigurable PPT, the first criterion
used in selecting the basic trees (same number of nodes) was
changed to structural similarity in the structures of chosen
PPTs. The structural similarity was defined as the number of
common (gray) nodes that can be found in the two PPTs. A
careful examination of Han-Carlson and Brent-Kung (B-K)
reveals that for 16-bit inputs, H-C has 32 nodes in five levels
and B-K has 26 nodes in six levels. Figure 6 illustrates the
implementation of B-K PPT.

In order to remain consistent with H-C node numbers, the
nodes are not enumerated sequentially in this figure. Even
though the total number of nodes in the PPTs are different,
but there are 18 common nodes between H-C and B-K. So,
these two were identified as similar structures. The common
nodes were shared in the combined PPT. As for the nodes
with different inputs, if only one input of a node is different
(e.g., node 19), a MUX is used to steer the logic properly.
But if both inputs of corresponding nodes are different
(e.g., node 26), then instead of sharing the node and using
MUX is, both nodes are kept. Figure 7 shows the
resulting reconfigurable PPT that can implement H-C PPT
(with gray and black nodes) or B-K PPT (with gray and
white nodes).

As will be discussed in Section 4, the experimental
results show that this approach provides superior results
compared to the other approaches depicted in figures 4 and 5.
Therefore, one may conclude that if a hybrid reconfigurable
PPT is desired, then choosing the PPTs based on their
structural similarity leads to better designs with smaller area
and delay overheads compared to just considering equal
number of nodes in them. To explore another kind of
reconfigurability, a reconfigurable adder that takes operands
of different types and sizes is introduced next.



S. Emami and M. Sedighi: Exploring Reconfigurability Options Among Decimal Adders (Regular Paper)

Stage 1

Stage 2

Stage 3

Stage 4

Stage 1

Stage 2

NN\ PR

(3

Stage 3

Stage 4

Stage 5

15] |14
8 Stage 1
16) (15 Stage 2

é9 22) (23 21 20 18 67 Stage 3

L1 L
— |1 ///
L1 L
L L]
/
//
@5 30 28 Stage 4
I\
(29) 19 Stage 5

Figure 4. Reconfigurable PPT (Combined L-F/H-C), Step 1



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016

Figure 7. Reconfigurable PPT (Combined H-C/B-K), Step 3

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

36



S. Emami and M. Sedighi: Exploring Reconfigurability Options Among Decimal Adders (Regular Paper) 37

3.2. Proposed Reconfigurable Adder

Modern processors are generally designed with a wide
(like 64 bits) data path. A wide data path usually necessitates
a wide ALU as well. For instance, a 64-bit processor requires
a 64-bit adder. Research has shown that there are many
applications in which a sizeable portion of operations are
executed on shorter data structures (such as Smallint) as
compared to longer ones (like Long) supported by the
hardware [34]. The statistics found in literature indicates that
60% of binary operations contained in various applications
such as airline systems, banking, financial analysis,
insurance, etc. use 16-bit Smallint variables and only the
remaining 40% of the operations need 32-bit Integers even
though the processors still have to provide support for 32-bit
operations [34].

In those circumstances, a wide adder is not always
needed and having the option to configure the wide adder as
two narrower adders that can work in parallel can offer a
potentially considerable improvement in terms of throughput
and/or performance. Furthermore, if equipped with power
gating mechanism, the upper half of a wide adder can be
switched off in case only the lower half is used whereby
providing a power saving potential.

There are also many reported scenarios in which the input
of an arithmetic unit might alternate between binary and
decimal. For instance, in applications that provide scientific
and financial services to their customers, the service
providers often use binary arithmetic for the former and
decimal for the latter group of services using the same
(cloud) hardware infrastructure [35]. If only single-type
arithmetic units are available, designers will have to use both
binary and decimal hardware modules simultaneously in
their implementations. A reconfigurable binary/decimal
adder in these cases will certainly be beneficial.

Given these conditions, a new reconfigurable adder is
proposed in this paper. The proposed adder, shown in figure
8, is a combined binary/decimal adder that can operate on
different sizes of operands. In the proposed design, X; and Y;
represent the binary or BCD digits of two input operands. A

signal “D” indicates that inputs are binary (D = 0) or decimal
(D = 1). The design has two distinct parts that can operate

independently or together. Each part can be configured as

either a 4n-bit binary adder or an n-digit decimal adder. If
configured to perform the addition in a cascaded form, the
proposed adder will take the shape of either an 8n-bit binary
adder or a 2n-digit decimal adder. Each part of the design is
n comprised of “dual sum generation” units. The internal
circuitry of these units is illustrated in figure 9 (reproduced
from [36]). In this figure, the squares produce the bit
generate, propagate, and half-sum (#,-%5) signals and the
circles are ordinary parallel prefix nodes. The dual sum
generation units compute P, and G; for each decimal digit that
is fed into a quaternary PPT.

Each dual sum generation unit, also provides the result of
its corresponding digit addition in two conditions: If the
carry-in to that position is zero, the result is called S? and if
the carry-in is one, the result is called S!. In the lower half
adder (the right hand side one), when quaternary PPT
prepares correct decimal carries, the proper sum digit is
selected. However, in the left hand side adder, the problem is
slightly different. An “integrated” signal is defined that
indicates the size of operation. If this signal is equal to one,
two adders are cascaded to perform a 2n-digit decimal or 8n-
bit binary addition. Otherwise, they implement two
independent additions. The “carry selection” units receive the
carry-out of right hand side adder and produce the correct
control signal for selecting the appropriate sum. figure 10
shows the block diagram of the carry selection unit. In this
figure, P = P_,P_, ..P,, where n < i < 2n.

The proposed reconfigurable adder uses a Carry Select
Adder (CSA) as its basis. This basic adder was chosen
because it has fast implementations in literature. Depending
on the design objectives that one pursues, other types of
adder (such as Carry Skip Adder, Carry Look ahead Adder,
etc.) could also be used in the proposed architecture.

The next section provides the experimental results and
their analysis.

Kinet Voot Keey Voa K. ¥ |D: Kot Vo Xy T YooV | Dy
:r :.l :r :l :__t :¢ :r :l :1 :_l :t :__L
Dl Sum Dl Sum Dl Sum Dl Sum Dl Sum Dhml Sum
Bommg Frmeg oy | P G |P= o L Gy [Py G |7
L]

#51 st g5 st

[ 1 N
Mux Mux 0
E 51 Ui,

Figure 8. A reconfigurable combined binary/decimal adder



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016

Incrementer

Figure 9. Dual sum generation unit structure (reproduced
from [36])

38

Figure 10. Carry selection unit structure

4. Comparison

To analyze the characteristics of the proposed reconfigurable
designs, they were implemented at RT level using VHDL.
The codes were validated using Modelsim. The area and
critical path delay (both in terms of number of gates) of each
design are listed in table 1. The column “Reconfigurability
Overhead (Area)” shows the ratio of the corresponding
reconfigurable PPT divided by the average area of its basic
PPTs. Likewise, the column “Reconfigurability Overhead
(Delay)” contains the ratio of the corresponding
reconfigurable PPT delay divided by the average of its parent
PPTs. As can be seen in the table, considering the structural
similarity (step 3) produces the circuit with the smallest area
with 28% average area overhead. But the minimum critical
path delay and average delay overhead of 10% is obtained
when equal number of nodes in the basic PPTs is considered
(step 2).

Table 1. Comparison between basic PPTs and the proposed reconfigurable PPTs (for 16-bit wide inputs)

Parallel Prefix Tree Area Reconfigurability Overhead | Critical Path Delay | Reconfigurability Overhead
(Number of gates) (Area) (Number of gates) (Delay)
Ladner-Fischer (L-F) 128 N/A 9 N/A
Basic Han-Carlson (H-C) 128 N/A 11 N/A
Brent-Kung (B-K) 110 N/A 13 N/A
Combined L-F/H-C (Step 1) 209 1.63 19 1.9
Reconfigurable | Combined L-F/H-C (Step 2) 170 1.33 11 1.1
Combined H-C/B-K (Step 3) 152 1.28 15 1.25
—— L-F —a—HC —e—B-K ——L-F —e—HC —e—BK
pm? —&— L-F/H-C (Step 1) —%— L-F/H-C (Step 2) H-C/B-K (Step 3) W —&— L-F/H-C (Step 1) —%— L-F/H-C (Step 2) H-C/B-K (Step 3)

350

300

250

200

150

100

.\’_\\._._._.

—

N_

o

0.4 0.5 0.6 0.7 0.8 0.9

ns

180

170

160

150

140

130

120

110

100

90

80

0.

L

—

e

———

3 0.4 0.5 0.6 0.7 0.8 0.

9

1

0 1.1 1.2 1.3 1.4 1.5
ns

Figure 11. Area of 16-bit binary adders

Figure 12. Power of 16-bit binary adders




S. Emami and M. Sedighi: Exploring Reconfigurability Options Among Decimal Adders (Regular Paper) 39

¥ Bin./Dec. Add —@— Reconfigurable Bin./Dec. Adder

1060

1040

1020

1000

980

960

940

=¥ Bin./Dec. Add —@— Reconfigurable Bin./Dec. Adder

uw
950

940
930
920
910
900
890
880
870
860

850

Figure 13. Area of 16-digit/64-bit binary/decimal adders

For more accurate analysis, the designs were also
synthesized based on Nan Gate FreePDK45 Open Cell
Library under typical process and normal operating
conditions using Synopsys Design Compiler tool. The
reconfigurable PPTs were synthesized with multiple target
delays as shown on the horizontal axes of figures 11 and 12.
These vertical axes in these figures represent the resulting
area and power, respectively. The target delays are in the
range of 0.3ns to 1.5ns with 0.1ns increments. If there is no
point in the curves for a specific target delay, it means that
no circuit could be found to satisfy the prescribed target
delay. The curves demonstrate a general congruence with
table 1.

Figures 13 and 14 depict the synthesis results of
combined binary/decimal reconfigurable adder for area and
power, respectively. To comply with IEEE 754-2008
standard [9], the adders are assumed to be 16-digit wide
(when decimal) and 64-bit wide (when binary). The
horizontal and vertical axes are similar to the ones in figures
11 and 12 except that the target delay range has been
modified to 0.7-3ns in order to accommodate for the larger
design in this case. The results are compared with the best
combined binary/decimal adder found in literature [36]. As
figure 13 shows, the area overhead of the proposed
reconfigurable adder is at most 5%. Notwithstanding the
worst case scenario, the average area overhead is far less
than that.

5. Conclusion

In this paper, different options for reconfigurability in
decimal adders were discussed. To this end, the possibility of
combining two conventional PPTs in order to reach a hybrid
reconfigurable PPT was explored. A few different criteria for
choosing which two PPTs should be combined were
considered and their effect on the resulting reconfigurable
PPT was discussed.

In a different perspective, the concept of reconfigurability
was extended to having an adder with flexible input size and
type. The proposed reconfigurable adder can implement one
2n-digit or two n-digit binary/decimal additions
concurrently. The synthesis results showed that for the same
target delay, the advantages of reconfigurability in the

Figure 14. Power of 16-digit/64-bit binary/decimal adders

proposed adder were reached with a maximum area overhead
of 5% and average area overhead of 1%.

References

[1]H. Goldstine, and A. Goldstine, "The Electronic
Numerical Integrator and Computer (ENIAC)," IEEE Ann.
Hist. Comput., vol. 18, no. 1, pp. 10-16, 1996.

[2] G. Gray, "UNIVAC | Instruction Set,” Unisys History
Newslett., vol. 5, no. 3, 2001.

[3] F. E. Hamilton, and E. C. Kubie, "The IBM magnetic
drum calculator type 650," J. ACM, vol. 1, no. 1, pp. 13-20,
Jan. 1954,

[4] L. Eisen, J. W. Ward IIl, H. W. Tast, N. Mading, J.
Leenstra, S. M. Mueller, C. Jacobi, J. Preiss, E. M. Schwarz,
and S. R. Carlough, "IBM POWER®6 Accelerators: VMX and
DFU," IBM Journal of Research and Development, vol. 51,
no. 6, pp. 663-684, 2007.

[5] A. Y. Duale, M. H. Decker, H. G. Zipperer, M. Aharoni,
and T. J. Bohizic, "Decimal Floating-point in z9: An
Implementation and Testing Perspective,” IBM Journal of
Research and Development, vol. 51, no. 1/2, pp. 217-228,
2007.

[6] E. M. Schwarz, J. S. Kapernick, and M. F. Cowlishaw,
"Decimal Floating-point Support on the IBM System z10
Processor,” IBM Journal of Research and Development,
vol. 53, no. 1, pp. 4:1-4:10, 20009.

[7]1 S. Carlough, A. Collura, S. Mueller, and M. Kroener,
"The IBM zEnterprise-196 Decimal Floating-Point
Accelerator,” Proceedings of the 20" IEEE Symposium on
Computer Arithmetic, pp. 139-146, 2011.

[8] IBM Corporation,  The  "telco" Benchmark,
http://speleotrove.com/decimal/telcoSpec.html,October 2016.

[9] Standards Committee, "754-2008 IEEE Standard for
Floating-Point ~ Arithmetic,” IEEE Computer Society
Standard, pp. 1-58, 2008.



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 40

[10] N. Chainani, "Decfloat: The Data Type of the Future,"
http://www.ibm.com/developerworks/data/library/techarticle/
dm-0801chainani, January 2008.

[11] M. Cornea, "Intel decimal floating-point math library,"
https://software.intel.com/en-us/articles/intel-decimal-
floating-point-math-library, October 2016.

[12] GCC, the GNU
https://gcc.gnu.org, October 2016.

Compiler Collection,

[13] M. Anderson, C. Tsen, L. K. Wang, K. Compton, and
M. J. Schulte, "Performance Analysis of Decimal Floating-
Point Libraries and its Impact on Decimal Hardware and
Software Solutions," Proceedings of the 27" IEEE
International Conference on Computer Design, pp. 465-471,
20009.

[14] H. Fahmy, R. Raafat, A. M. Abdel-Majeed, R. Samy, T.
EIDeeb, and A. Farouk, "Energy and Delay Improvement via
Decimal Units," Panel on Decimal Arithmetic in Industry,
Proceedings of the 19" IEEE Symposium on Computer
Arithmetic, pp. 221-224, 2009.

[15] L. K. Wang, M. A. Erle, C. Tsen, E. M. Schwarz, and
M.J. Schulte, "A Survey of Hardware Desgins for Decimal
Arithemetic," IBM Journal of Research and Development,
vol. 54, no. 2, pp. 8:1-8:15, 2010.

[16] A. Vézquez, and E. Antelo, "A High-performance
Significand BCD Adder with IEEE 754-2008 Decimal
Rounding,” proceedings of the 19" IEEE Symposium on
Computer Arithmetic, pp. 135-144, 20009.

[17] A. Vazquez, High-performance Decimal Floating-point
Units, Ph.D. dissertation, University of Santiago de
Compostela, Santiago de Compostela, Spain, 2009.

[18] R. D. Kenney, and M. J. Schulte, "High-speed
Multioperand Decimal Adders,” IEEE Transactions on
Computers, vol. 54, no. 8, pp. 953-963, 2005.

[19] A. Vazquez, E. Antelo, and P. Montuschi, "A New
Family of High-performance Parallel Decimal Multipliers,"
Proceedings of the 18" IEEE Symposium on Computer
Arithmetic, pp. 195-204, 2007.

[20] D. Chen, L. Han, Y. Choi, and S. B. Ko,
"ImprovedDecimal Floating-point Logarithmic Converter
based on Selection by Rounding,” IEEE Transactions on
Computers, vol. 61, no. 5, pp. 607-621, 2012.

[21] A. Vazquez, E. Antelo, and P. Montuschi, "Improved
Design of High-performance Parallel Decimal Multipliers,"
IEEE Transactions on Computers, vol. 59, no. 5, pp.
679-693, 2010.

[22] A. Nannarelli, "FPGA based Acceleration of Decimal
Operations," Proceedings oflnternational Conference on
Reconfigurable Computing and FPGAs, pp. 146-151, 2011.

[23] A. Vazquez, and F. de Dinechin, "Multi-operand
Decimal Tree Adders for FPGAs," INRIA, Research Report,
2010.

[24] G. Bioul, M. Vazquez, G. P. Deschamps, and G. Sultter,
“Decimal Addition in FPGA," Proceedings of the 5"
Southern Conference on Programmable Logic, pp. 101-108,
20009.

[25] H. Calderon, G. Gaydadjiev, and S. Vassiliadis,
"Reconfigurable  Universal Adder,” Proceedings of
International Conference on Application-specific Systems,
Architectures and Processors, pp. 186-191, 2007.

[26] T. Mohit, V. Apurva, and K. Kavita, "A Novel
Hardware Efficient Reconfigurable 32-bit Arithmetic Unit
for Binary, BCD and Floating-point Operands,"” International
Journal of Engineering Science & Technology, vol. 3, no. 5,
pp. 4449-4464, 2011.

[27] M. A. Shami, "Dynamically Reconfigurable Resource
Array," Ph.D. Dissertation, KTH Royal Institute of
Technology, Sweden, 2012.

[28] R. Brent, and H. Kung, "A Regular Layout for Parallel
Adders," IEEE Transactions on Computers, vol. C-31, no. 3,
pp. 260-264, 1982.

[29] J. Sklansky, "Conditional-sum Addition Logic,” IRE
Transaction Electronic Computers, vol. EC-9, pp. 226-231,
1960.

[30] P. Kogge, and H. Stone, "A Parallel Algorithm for the
Efficient Solution of a General Class of Recurrence
Equations,"IEEE Transactions on Computers, vol. C-22, pp.
786-793, 1973.

[31] T. Han, and D. Carlson, "Fast Area-efficient VLSI
Adders," Proceedings of the 8" IEEE Symposium on
Computer Arithmetic, pp. 49-56, 1987.

[32] S. Knowles, "A Family of Adders,” Proceedings of the
15™ IEEE Symposium on Computer Arithmetic, pp. 277-281,
2001.

[33] R. Ladner, and M. Fischer, "Parallel Prefix
Computation," Journal of ACM, vol. 27, no. 4, pp. 831-838,
1980.

[34] M.Cowlishaw,"Doapplicationsactuallyusedecimaldata?,
"http://speleotrove.com/decimal/decifaql.html#dbstats,
October 2016.

[35] NCR Corporation, http://www.ncr.com/products-and-
services/cloud-services, October 2016.

[36] M. Dorrigiv, and G. Jaberipur, "Low Area/power
Decimal Addition with Carry-select Correction and Carry-
select Sum-digits," Integration, the VLSI Journal, vol. 47,
no. 4, pp. 443-451, 2014.



S. Emami and M. Sedighi: Exploring Reconfigurability Options Among Decimal Adders (Regular Paper)

Samaneh Emami received her B.S. and
M.S. degrees in Computer Engineering from
Shahid Beheshti University in 2008 and
2011, respectively. Since 2011, she has been
pursuing her Ph.D. in  Computer
Engineering at the Department of Computer
Engineering and Information Technology
(CEIT), Amirkabir University of Technology. Her research
interests include computer arithmetic, high-level synthesis
and reconfigurable design.

E-mail: s.emami@aut.ac.ir

Mehdi Sedighi received his B.S. in
Electrical and Computer Engineering from
Sharif University of Technology in 1990
and his M.S. and Ph.D. in the same field
from University of Colorado at Boulder in
1994 and 1998, respectively. Since late
2001, he has been with the Department of
Computer Engineering and Information Technology at
Amirkabir University of Technology where he is currently an
associate professor. His research interests include VLSI
design, synthesis of arithmetic circuits, embedded systems
and quantum computing.

E-mail: msedighi@aut.ac.ir

Paper Handling Data:

Submitted: 07.10.2016

Received in revised form: 21.11.2016

Accepted: 01.12.2016

Corresponding author: Dr. Mehdi Sedighi,

Computer Engineering and Information Technology
Department, Amirkabir University of Technology,
Tehran, Iran.




~
™

—

=
The CSI Journal on

— — Computer
Scienceg Engineering

The CSI Journal on

Computer Science and Engineering
Vol. 13, No. 2, 2016

Pages 42-47

Regular Paper

A Deep Learning Method to Estimate 3D Point of Regard by Joint
Head and Eye Information

Rahim Entezari

Mohammad Mahdi Arzani

Mahmood Fathy

Amir Hossein Bayat

Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

The development of systems that can characterize the state of the human is now important for many applications. In particular, as an
indicator of attention and interest, the human gaze is an important cue in people behaviors, personality, intentions, and activities. Gaze also
play a crucial role in the communication process. However, in spite of great advances during last three decades, current gaze estimation
methods cannot addresses required conditions in this field, e.g. user head movements and minimum user calibration. There have been some
works to resolve such problems but those methods lack good precision. In this work, we have used a method for appearance-based gaze
estimation using convolutional neural networks, which is multimodal. This method in our implemented setting significantly outperforms

state-of-the-art methods.

Keywords: Gaze Estimation, Convolutional Neural Networks, Head Movement, Attantion, Calibration.

1. Introduction

The most important ways of non-verbal communication
consist of facial expressions, hands position, gestures, and
gaze. The last one plays a crucial role when people interact,
as it is used to regulate the flow of communication, monitor
feedback, reflect cognitive activity, express emotions, and
communicate the nature of the interpersonal relationship [1].
In general, gaze is a very strong indicator for subject
attention process.

In the recent years, as there is much rich information in
non-verbal cues, there has been a growing interest from
diverse domain on tools, which are able to retrieve the state
of human.

Appearance-based gaze estimation which does not need
specific tools is a hot topic research in computer vision as it
can be used for several application domains, including gaze-
based human-computer interaction and visual behavior
analysis [2].

We now know that the desired gaze consists of two
factors [3] i.e. the head pose and the eye locations. The
estimation of these mentioned factors is often achieved using

expensive or limiting hardware.Therefore, the problem is
often simplified by either considering the head pose or the
eye center locations as the only feature to understand the
interest of a subject [4].

Here, Appearance-based 3D gaze estimation is a
supervised regression problem in which 3D gaze direction is
predicted from input features, i.e. a set of an eye image and a
3D head pose. In general, the performance of appearance-
based methods depend on the quality and diversity of
training data and also generalization ability of the regression
algorithm [5].

In most of the previous studies, evaluation has been
conducted using the test and training data of the same person,
and this leads to less generalization for the different
conditions [6].

This paper is based on previous work [6] done by Xucong
Zhang, et al .They have employed the LeNet for the deep



R. Entezari, M. M. Arzani, M. Fathy and A. H. Bayat: A Deep Learning Method to Estimate 3D Point ...

network. They have used cropped eyes and head pose
information directly integrated with EYEDIAP dataset for
the features, i.e. there is no explicit feature extraction phase.

We have deployed the same method except for the
following differences in the setting:

- Extracted head pose information

- Cropped eye images

- Number of training data

- Training parameters

Zhang et al. at Max Plank Institute (MPI) have used
vectors of 2D angle for the head pose, while we have used
vectors of 12, consisting of 9 float numbers of head pose
rotation matrix and 3 of translation matrix.

They also cropped both eyes in one image (Figure 1(a))
whereas we have used both eyes in separate images (Figure
1(b)).

They have only used the screen target sequences and have
not covered floating target data, which are more challenging
and contain many extreme gaze directions, but we have used
all dataset videos, divided for the train, test and validation.
Figure 2. Shows some frames which are not covered by [6].

(b) Left and Right eyes

(a) Both eyes in one image

Figure 1. Example eye images (a) MPL, (b) ours

Figure 2. Example frames not covered by [6]

In this work, we also have used different training
parameters for the deep network, which obviously helped us
to converge better and get better results. The goal here is to
predict the point of regard. i.e. where the participant is
looking at (Figure 3).

Below, we review the related works on gaze estimation
(Section 2) and then introduce used method (Section 3). In
section 4, we talk about details of used method and
experiments. Section 5 consists of conclusion and future
works.

(Regular Paper) 43

2. Related Work

The survey by Hansen [1] provides a comprehensive
overview of computer vision methods for gaze estimation. In
general, gaze estimation methods can be further divided to
model-based or appearance-based [1]. Model-based methods
use a geometric eye model and are divided into corneal-
reflection and shape-based methods, depending on whether
they require external light sources to detect eye features.

Some related works on corneal reflection-based methods
were focused on stationary setting and some more
complicated with arbitrary head poses [6].

On the other hand, the focus of shape-based methods is
on pupil center and iris edges [1]. Zhu et al. [7] used thres
holding for pupil center estimation. Yamazoe et al. [17] also
proposed to fit a geometric model from segmentations of the
eye images. These segments were obtained through simple
thres holding. During the test phase, they used the iris center
derived from a fitted ellipse to infer gaze. Voting-based
methods are also used in edge detection process [8]. The
more complex shape models [9] were proposed to
compensate problems in simple shape-based models, but this
leads to more computation and most of these models need
high-quality images [1]. Some later works in shape-based
methods [10] used the ensemble of Random Regression
Trees for pupil center localization. Strupczewski et al. [11]
proposed different geometric model for webcam eye gaze
tracking.

The most important advantage of appearance-based gaze
estimation methods, which are also known as holistic
methods [1], is that they use eye images as input, therefore
there is potential to work with lower resolution eye images.
Some early works assumed a fixed head pose while newer
works deal with 3D head pose estimation [6].

It is worth mentioning that there is another category for
hybrid models [1]. Some works [12] use methods of
combining shape and appearance or shape and color [13].

Appearance-based methods require larger amounts of
user-specific training data than model-based methods [1] but
it can be compensated with last released datasets, e.g.
EYEDIAP which consists many frames.

Williams et al. relied on semi-supervised Gaussian
Process Regression (GPR) for visual mapping [14]. More
recently, Lu et al. [15] proposed adaptive linear regression
which is based on sparse image reconstruction. Their method
required a fixed head pose. To remove fixed head pose
constraint Lu et al. proposed a Gaussian Process Regression
based pose correcting scheme on top of fixed head pose
model [16]. Funes et al. [17] used RGBD cameras to directly
handle eye appearance variation by generating frontal
looking eye images used as input to adaptive linear
regression.

Some recent works [18]uses egocentric videos and based
on activity, head and hand locations, eye gaze is estimated.
In [19] authors used conditional random field as a graphical
model to map relation between head, human body pose and
face for eye gaze estimation. Mansouryar et al. directly maps
2D pupil positions to 3D gaze directions in scene camera
coordinate space [20]. Feng Lu et al. have employed the
advantages of recent sparse auto-encoding techniques. They
partition any eye image into small patches .Using these
patches they learn a codebook comprising a set of bases,



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 44

which can reconstruct any eye image patch with sparse
coefficients. By examining these coefficients, they can
analyze the eye shape more effectively [21]. Krafkaet. al.
[22] released the dataset of gaze tracking on the mobile
device, called Gaze Tracker. They also have used the
convolutional neural network to estimate gaze of mobile
device user on the screen. They employed eyes, face and face
grid, that is a binary mask used to indicate the location and
size of the head within the frame. They reported a prediction
error of 1.7lcm on mobile phone screen according to the
location of the camera.

Eyeball center Point of regard

Iris canler

Figure 3. llustration of point of regard

3. The Proposed Method

We first convert each video to frames, then eyes are
extracted from frames. Extracted eyes are fed to a
convolutional network. This multimodal convolutional
network is the same one used in [6]. They have used LeNet
network architecture that consists of one convolutional layer
followed by a max-pooling layer. The third layer is a second
convolution layer, which is followed by another max-pooling
layer, and a final fully connected layer.

Similar to [6] we train a linear regression layer on top of
the fully connected layer to predict point of regard. This
CNN has two inputs, cropped eyes and head pose
information. The head pose information here is nine values
of the rotation matrix and three values for translation. A
rotation of a radians about the x-axis,  radians about y-axis
and y radians about z-axis are defined as following,
respectively [23]:

[1 0 0
Ry(@)=10 cosa —sina
10 sina  cosa
[cosB 0 sinf]
RB= 0 1 0
l—sin 0 cosfl
[cosy —siny 0]
R, (y)=|siny cosy O
L 0 0 11

So if we rotate first about the x-axis, then the y-axis and
finally the z-axis, this can be represented as the matrix
product ofR= Ry(a) Ry(B) R (y) which is equivalent to
following Rotation matrix:

cosfBcosy
cosfBsiny
—sinf3

sinasinfcosy — cosasiny cosasinfcosy + sinasiny
sinasinfsiny + cosacosy cosasinfsiny — sinacosy
sinacosf €OSaCcosa

We tried to extract three values of angles in addition to
the translation matrix. As it has not been mentioned in the
dataset that what are the right orders of rotations, i.e. x-axis,
y-axis then z-axis, x-axis, z-axis then y-axis, etc. we have
deployed these six possible permutations to find the
corresponding order. We have found that mentioned order
“A rotation of o radians about the x-axis, § radians about the
y-axis, and y radians about the z-axis” is the right one. So we
tested two scenarios, first the extracted three rotation angles
were concatenated to translation matrix; secondly, we have
used integrated twelve values. Our results showed the later
scenario gives better results. This information used to learn
mapping from eye images and head pose vectors to point of
regard.

3.1. Preparing Data

We have used EYEDIAP dataset[24]. In total, there are 94
recorded sessions in EYEDIAP. Each session will be denoted
by the string “P-C-T-H” which refers to the participant id
(1-16), the recording conditions C= (A or B), the used target
T= (DS, CS or FT), i.e. Discrete Screen, Continuous Screen
and floating target moving in the space, respectively. The
head pose also consists of H=(S or M), static or moving. Each
session in conditions “A” correspond to 2.5 minutes of
recording time, whereas the sessions recorded in conditions
“B” last approximately 3 minutes each. This corresponds to
more than 4 hours of data. Table 1 summarize all recorded
data.

Table 1. Summary of the recorded sessions

Participants Recorded sessions
111 A-DS-S; A-DS-M; A-CS-S; A-
CS-M; A-FT-S; A-FT-M
12-13 B-FT-S; B-FT-M
A-DS-S; A-DS-M; A-CS-S; A-
14-16 CS-M; A-FT-S; A-FT-M; B-FT-S;
B-FT-M

To standardize the definition of all 3D variables in the
data, Funes et al. have defined a common world coordinate
system (WCS), in which the variables refers to meters. In this
definition, if pe R’ is a point defined w.r.t. the coordinate
system of Kinect RGB camera, then defined WCS is the
equivalent p,, w.rt. the WCS is given by py = Rypxt ty

where:
1 0 0 0
0 -1 0] ,t=|0
0o 0 -1 1

In which R, and t,, are rotation and translation matrices
respectively.

The very first stage is to convert videos into frames using
OPENCYV. We tried to use MATLAB for framing, but the
problem was that framed images were not synchronized with
the corresponding frame in the video. It seems MATLAB has
some problems with framing videos, after framing, we have
about 500K frames. It is mentioned in EYEDIAP dataset
that some frames are not valid. This is due to two factors, the
participant is blinking at the given frame or the participant is
not looking at the visual target at the given frame, e.g.
whenever the participant is distracted. So non-OK frames are
removed from extracted frames using given data within

R, =




R. Entezari, M. M. Arzani, M. Fathy and A. H. Bayat: A Deep Learning Method to Estimate 3D Point ... (Regular Paper) 45

dataset. For cropping eyes we used the integrated data within
the dataset, i.e. Kinect RGB eyeball center left and right

(x Ly Lx ry r).
3.2. POR Estimation Using CNN

Here we have used Multimodal CNN [6] to learn how to map
inputs to gaze coordinates in world coordinate space. Inputs
are eye images and 12 value head vectors. This model is
multimodal as it uses both eye images and head pose float
numbers.

In our model, we have used the Le Net network
architecture that consists of one convolutional layer followed
by a max-pooling layer, a second convolution layer followed
by a max-pooling layer, and a final fully connected layer. We
train a linear regression layer on top of the fully connected
layer to predict gaze angle vectors. The input to the network
is RGB eye images with a fixed size of 40 x 40 pixels, as
available eyeball center is at the exact center of this window
(Figure 4).

The output of the network is a 3D gaze point where the
observer is looking at. The point of regard, which is given
within dataset, is compared to this output coordinate. As a
loss function, we used the sum of individual L, losses that
measures the difference between predicted coordinate and

the actual point of regard.
500

1@40x40

T T
- gf M

| convolution layer

- D_- i

3
| sub-sampling layer | convolution layer | sub-samping layer | cor R |

Figure 4. Architecture of used multimodal CNN. Head
vectors are added to the output of fully connected layer.Here
we have used [6] but with 3D gaze point

4. Experiments

In this section, we discuss gaze estimation task and validate
the effectiveness of used multimodal CNN approach.

We compare our method with state-of-the-art methods on
the EYEDIAP dataset. We have divided the dataset into
training, validation, and test sets.

4.1. Training

We have used the first 10 people of EYEDIAP for training.
This means training set consists of about 200K frames. We
trained deep network using caffe [25]. Caffe is a deep
learning framework made with expression, speed, and
modularity in mind. It is developed by the Berkeley Vision
and Learning Center (BVLC) and by community
contributors. We have used the batch size of 500, so every
epoch is 400. We have trained this network from scratch,
with the base learning rate of 0.001, the momentum of 0.95
and weight decay of 0.0005. We also have used ad a delta to
get better convergence instead of SGD. Delta parameter is set
to le-6. With respect to validation loss, we have trained our
CNN for 80K iterations.

4.2. Validation

The next 2 person are used for validation, and this was about
40K frames. With batch size of 500, we had 80 test iterations
with interval of 10K. This last value means we have carried
out validating every 10K training iterations.

4.3. Test

We have used remaining dataset videos for the phase of the
test, i.e. we have 70K frames. In this phase we have fed each
frame of test to the trained model, in addition to the head
pose data. The output which is a 3D float number refers to
the point the person is looking at. For getting Mean Error
Degree, for each testing frame, we have connected the center
of eyes to the predicted and actual gaze point which results in
2 vectors. The degree between these two vectors are
calculated with the following formula:

X.

® = cos™'(

)

.
[yl

Number of frames

0 0.5 1 1.5 2 2.5 3 3.5

Error (degree)

Figure 5. histogram of error for test frames

Mean Errors (Degree)

MPI Ours

Figure 6. performance of our method compared to [6]

Figure 5 show the histogram of error for all test frames.
As you can see in figure 6. We have much better result than
state-of-the-art [6] method for EYEDIAP dataset. The mean



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 46

error degree is less than one degree, meaning the difference
between actual gaze vector and estimated one is about 0.79
degree.

Figure 7. Also shows the output of some layers in this
CNN.

In this figure, (a) corresponds to an example of input
RGB frame. This input is cropped eye images. (b) Shows the
filters of first convolution layer, (c¢) shows the output of first
convolution layer. Another layer shown in this figure is max-
polling, which is a form of non-linear down-sampling. Max-
pooling partitions the input image into a set of non-
overlapping rectangles and, for each such sub-region, outputs
the maximum value:

@

Figure 7. Figure 7 (a) Cropped eye, (b) convl filters, (c)
convl output (rectified responses of the filters), (d) pooll
output

5. Conclusion and Future Work

Despite lots of works mentioned in literature, there have been
few works for appearance-based gaze estimation with low-
quality images. Those with this condition evaluated
exclusively under controlled conditions with low range head
poses. In this work we have employed [6] method with
different setting for EYEDIAP dataset which varies in
different head pose and illumination conditions. This dataset
is very challenging as floating target sequences contain many
extreme gaze directions. Our setting for CNN-based
estimation model significantly outperforms [6] which is
state-of-the-art. Our future work will consist in using
different deep network. We also will try to get eye images
and head pose automatically.

References

[1] Hansen, D. Witzner, and Q. Ji, "In the eye of the
beholder: A survey of models for eyes and gaze," Pattern
Analysis and Machine Intelligence, IEEE Transactions on
pp- 478-500, 2010.

[2] C. H. Morimoto, and M. R. M. Mimica, "Eye gaze
tracking techniques for interactive applications," Computer
Vision and Image Understanding, vol. 98, pp. 4-24, 2005.

[3]S. R. Langton, H. Honeyman, and E. Tessler, "The
influence of head contour and nose angle on the perception
of eye-gaze direction," Perception & psychophysics, vol. 66,
pp. 752-771, 2004.

[4] N. Robertson, and I. Reid, "Estimating gaze direction
from low-resolution faces in video," in European Conference
on Computer Vision, pp. 402-415, 2006.

[5TY. Sugano, Y. Matsushita, and Y. Sato, "Learning-by-
synthesis for appearance-based 3d gaze estimation,”" in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1821-1828, 2014.

[6] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling,
"Appearance-based gaze estimation in the wild," in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4511-4520, 2015.

[7] Z. Zhu, K. Fujimura, and Q. Ji, "Real-time eye detection
and tracking under various light conditions," in Proceedings
of the 2002 symposium on Eye tracking research &
applications, pp. 139-144, 2002.

[8] R. Valenti, and T. Gevers, "Accurate eye center location
and tracking using isophote curvature," in Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pp. 1-8, 2008.

[9] L. F. Ince, and J. W. Kim, "A 2D eye gaze estimation
system with low-resolution webcam images," EURASIP
Journal on Advances in Signal Processing, vol. 2011, pp.
1-11, 2011.

[10] N. Markus, M. Frljak, I. S. Pandzi¢, J. Ahlberg, and R.
Forchheimer, "Eye pupil localization with an ensemble of
randomized trees," Pattern recognition, vol. 47, pp. 578-587,
2014.

[11] A. Strupczewski, B. Czuprynski, J. Naruniec, and K.
Mucha, "Geometric Eye Gaze Tracking," in International
Conference on Computer Vision Theory and Applications,
pp. 446-457,2016.

[12] D. W. Hansen, J. P. Hansen, M. Nielsen, A. S. Johansen,
and M. B. Stegmann, "Eye typing using Markov and active
appearance models," in Applications of Computer Vision,
2002.(WACV 2002). Proceedings. Sixth IEEE Workshop on,
pp. 132-136, 2002.

[13] D. W. Hansen, "Using colors for eye tracking," Color
Image Processing: Methods and Applications, pp. 309-327,
CRC Press, 2006.

[14] O. Williams, A. Blake, and R. Cipolla, "Sparse and
Semi-supervised Visual Mapping with the S* 3GP," in 2006
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR'06), pp. 230-237, 2006.



R. Entezari, M. M. Arzani, M. Fathy and A. H. Bayat: A Deep Learning Method to Estimate 3D Point ... (Regular Paper) 47

[15]F. Lu, Y. Sugano, T. Okabe, and Y. Sato, "Adaptive
linear regression for appearance-based gaze estimation,"
IEEE transactions on pattern analysis and machine
intelligence, vol. 36, pp. 2033-2046, 2014.

[16] F. Lu, T. Okabe, Y. Sugano, and Y. Sato, "A Head
Pose-free Approach for Appearance-based Gaze Estimation,"
in BMVC, pp. 1-11, 2011.

[171K. A. F. Mora, "3D Gaze Estimation from Remote
RGB-D Sensors," PhD Thesis, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland, 2015.

[18] Y. Li, A. Fathi, and J. M. Rehg, "Learning to predict
gaze in egocentric video," in Proceedings of the IEEE
International Conference on Computer Vision, pp.
3216-3223,2013.

[19] B. Benfold, and I. Reid, "Unsupervised learning of a
scene-specific coarse gaze estimator," in 2011 International
Conference on Computer Vision, pp. 2344-2351, 2011.

[20] M. Mansouryar, J. Steil, Y. Sugano, and A. Bulling, "3D
gaze estimation from 2D pupil positions on monocular head-
mounted eye trackers," in Proceedings of the Ninth Biennial
ACM Symposium on Eye Tracking Research & Applications,
pp. 197-200, 2016.

[21]1F. Lu, and X. Chen, "Person-independent eye gaze
prediction from eye images using patch-based features,"
Neurocomputing, vol. 182, pp. 10-17, 2016.

[22] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S.
Bhandarkar, W. Matusik, and et al., "Eye tracking for
everyone," in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2176-2184,
2016.

[23]1 G. G. Slabaugh, "Computing Euler angles from a
rotation  matrix," accessed on June 2016, at
http://thomasbeatty.com/MATH%20PAGES/ARCHIVES%?2
0-%20NOTES/Applied%20Math/euler%?20angles.pdf.

[24]K. A. F. Mora, F. Monay, and J.-M. Odobez,
"EYEDIAP: a database for the development and evaluation
of gaze estimation algorithms from RGB and RGB-D
cameras," in Proceedings of the Symposium on Eye Tracking
Research and Applications, pp. 255-258, 2014.

[25]Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, and et al., "Caffe: Convolutional architecture for
fast feature embedding," in Proceedings of the 22nd
ACM international conference on Multimedia, pp. 675-678,
2014.

Rahim Entezarireceived the B.S. degree
in Computer Engineering from Amirkabir
University (Tehran Polytechnic), Iran,
2013. He is currently pursuing the MSc.
|“ \ IR program of Artificial Intelligence at Iran
University of Science and Technology. His
current research interests include deep learning, probabilistic
graphical models, and computational neuroscience.
E-mail: r_entezari@comp.iust.ac.ir

Mohammad Mahdi Arzani received the
B.S. degree in Computer Engineering from
Shahed University, Iran ,2008, and the M.S.
degree in Artificial Intelligence from Sharif
University of Technology, Iran , 2010. He is
currently pursuing the Ph.D. program at
Iran University of Science and Technology.
His current research interests include deep learning,
probabilistic graphical models and human behavior analysis.
E-mail: marzani@iust.ac.ir

Amir Hossein Bayat recievied his BSc in

Computer Engineering from K.N.Toosi

Sila University of Technology in 2014 He is

-~ currently pursuing the MSc. program of

\*’ | Artificial Intelligence at Iran University of

v Science and Technology. His research

interests include computer vision, machine

learning, probabilistic graphical models, deep learning and

big data mining.

E-mail: a_bayat@comp.iust.ac.ir

Mahmood Fathyreceived his BSc in
electronics from Iran University of Science
and Technology in 1984, MSc in computer
architecture in 1987 from Bradford
University, United Kingdom, and PhD in
image processing computer architecture in
1991 from University of Manchester,
United Kingdom. Since 1991, he has been an academic
member in the Computer Engineering School of IUST. His
research interests include image and video processing,
parallel and distributed processing machine learning,
vehicular social network, and big data mining.

E-mail: mahfathy@iust.ac.ir

Paper Handling Data:

Submitted: 11.11.2016

Received in revised form: 15.12.2016

Accepted: 27.12.2016

Corresponding author: Dr. Mahmood Fathy,
Department of Computer Engineering, Iran University
of Science and Technology, Tehran, Iran.




~
™

(
1 — Computer

Scienceg Engineering

The CSI Journal on

Computer Science and Engineering
Vol. 13, No. 2, 2016

Pages 48-53

Regular Paper

The Impact of Excess-Modulo Representation of Residues on
Modulo-(2™ — 5) Parallel Prefix Addition

Ghassem Jaberipur Hassan Ghasemi Motlagh

Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

It is desirable to realize latency-balanced computation channels in residue number systems (RNS). In particular modulo-(2™ — &) addition
with selected values of § (e.g., § € {1,3,5}) is of interest. Modulo-(2™ — 1) adders are realized via one’s complement addition, where (2" — 1)
is also valid as a second representation for zero. Fast parallel prefix realization of such adders exist with (3 + 2[logn]) AG latency, where AG
denotes the delay of a simple 2-input gate. Similarly, modulo-(2" — 3) adders with excess-modulo representations of residues in {0, 1, 2} has
been recently proposed with (4 + 2[logn]) AG latency. It has been shown that such double representation of residues does not jeopardize the
subsequent RNS operations. To approach larger dynamic ranges, while keeping the channel widths (i.e., n) as low as possible, fast modulo-
(2™ — 5) adders could be quite useful. That’s how we are motivated to explore the design and implementation of such adders with the goal of
achieving the same latency of (4 + 2[logn]) AG. The proposed scheme is basically the same as that of the aforementioned modulo-(2" — 3)
adders. However, there are particular non-trivial challenges to be overcome. The proposed scheme is analyzed for latency and area measures,
which are confirmed via circuit synthesis by Synopsis Design Compiler.

Keywords: Modulo-(2" — 5) Adder, Excess-Modulo Representation, Parallel Prefix Modular Adders, Digital Signal Processing.

1. Introduction

The latency balance within the parallel computation channels
of a residue number system (RNS) arithmetic architecture is
desirable [1]. On the other hand, limited dynamic range of
the classical moduli set t©={2"—1,2",2" +1} calls for
additional balanced moduli, where modular addition and
multiplication can be performed with the same speed as in
the original three moduli. Parallel prefix fast adders [2-5] for
the aforementioned t system with (3 + 2[logn]) AG latency
has been proposed [6], where AG refers to the delay of a
simple 2-input AND or OR gate. The corresponding modulo-
(2™ — 1) adder takes advantage of a second representation for
zero, as 2™ — 1, where a regular parallel prefix (RPP) and the
so called totally parallel prefix (TPP) architectures [7] lead to
(5+ 2[logn]) and (3 + 2[logn]) AG latencies, respectively.
Moreover, similar modulo-(2" — 3) RPP and TPP adders
with (6 + 2[logn]) and (4 + 2[logn]) AG latencies have also

been reported [8], where 0, 1 and 2 have alternative
representations, as 2" — 3, 2" — 2, and 2" — 1, respectively.
However, we have not encountered any special modulo-
(2™ — 5) adder design in the literature, thus motivated to
present one with the same performance as that of the
aforementioned modulo-(2" — 3) adder. The rest of this paper
deals with a background on RNS arithmetic in Section 2, also
with a brief description of previous relevant modular adders,
offers our proposed modulo- (2" —5) adder designs in
Section 3, evaluations and comparisons in Section 4, and
finally concluding remarks in Section 5.

2. Background

A residue number system is mainly defined by a k-moduli set
{m4, ... m}, where the modulus are commonly pairwise
prime to allow for maximal range (aka dynamic range) of
presentable numbers [9]. The dynamic range, as such, is



Gh. Jaberipur and H. Ghasemi Motlagh: The Impact of Excess-Modulo Representation of Residues ... (Regular Paper)

equal to M = []<, m;. The RNS representation of a binary
number X is composed of k residues x; = [X|y, (i.e., the

remainder of integer division lmil, for 1 <i<k), where

addition and multiplication on binary operands X and Y are
performed on their corresponding residues x; and y; in k
parallel data paths.

Modulo-2" addition is exactly the same as conventional
n-bit addition, while multiplication is even simpler and less
costly. However, given the mutually prime property, only
one m; can be a power of two. The next popular moduli are
of the form 2"*P —1 (n > p), since the required adder is
exactly the same as a one’s complement adder, and the main
component of the corresponding multiplier is an (n + p)-
operand modular adder. The n > p restriction is to keep the
moduli set balanced in terms of arithmetic speed. However,
the number of such mutually prime moduli are limited.
Therefore, moduli of the form 2"*P + 1, and more recently
modulo-(2" — 3) have been employed in order to set up high
dynamic range balanced moduli sets [8].

Parallel prefix modular addition is popular, since it
provides for more balanced arithmetic circuits. For example,
(3 + 2[logn]) AG TPP adders have been proposed for modulo-
(2™ — 1), where figure 1 (borrowed from [8]) depicts the
required architecture. Also the fastest modulo-(2™ — 3) adder
that we have encountered is due to [8], where the latency of
its TPP architecture (see figure 2 that is borrowed from [8])
amounts to (4 + 2[logn]) AG. The legend for these figures and
the proposed designs are compiled in table 1.

3. The Proposed Modulo-(2™ — 5) Adder

The modulo-(2" —1), and —(2" —3) adders are fairly
balanced, since for instance in case of n = 8 (i.e., a typical bit
length in RNS applications such as image processing [10]),
9, and 10 AG latencies are achieved, respectively.
Nevertheless, in this section, we propose an RPP modulo-
(2™ — 5) adder, with the same (6 + 2[logn]) latency as the
fastest previous modulo-(2™ —3) RPP adder [8], which
consumes slightly more area and dissipates marginally more
power. We also provide a TPP version of the proposed adder
that performs as fast as the previous modulo-(2" — 3) TPP
adder [8], while the additional area and power measures are
negligible.

Y, X, Yo Vs X5 ViXu V3 X3 Y, Xo 11 X1 Yo X

S d

AV AVAVAV /% S

R e I R

S, S Ss S4 S30S, S S

Figure 1. The TPP modulo- (2" — 1) adderarchitecture

VX, XeYs YsXs YV Xi Y3Xs Y. X2 Vi Xi Yy X,

Figure 2. The TPP modulo-(2" — 3) adder architecture

Table 1. Logical cells used in the respected figures

Legend Description Figures
(G.P)
& ‘3 Buffer node 2,3
[
(G.P)
(Ge.Pr) (GrFr)
\ G
, node 1,2,3,4
G,vPG,
(Ge:P) (Gr-Pr)
(G,P)
node 1,2,3,4
(G vPG.PP)
(Gl'Pl) (Gr' Pr)
Pr—l

G P)
h’ node 3,4

(GP,G,, PvG,vP.Pr )

X
A Halfadder 2,3,4
|1
Xy x&y
v u
p=uVvyv
pgh g=UuAv 1,2,3,4
h=pg
p =uvw h = u®v Pe
g=uAv
u, Un-1Vn—1
pg’h g =gVv, 2,3,4
Up-1VVUn—1, /
un—1®vn—1
(Up—1AVp_1) VO,
Uy v Uy
Pg p'=pVuy, 2

ugVvVug

—
N J

&

N >

u @ vy
1




The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2015 50

3.1. The Proposed Modulo-(2™ — 5) RPP Adder

We follow the same approach as in [8] and come up with
table 2 that describes the steps of modulo-(2" — 5) addition
S = |X + Y|,n_g5, where EAC stands for end-around carry. This
table is quite similar to the figure 4 of [8], except that
position 2 (instead of 1) is occupied by G'y,_1.0 = vy + Gp-1.0
where G,_;, denotes the generated carry-out of
U+ V' [11]. Such difference, however, leads to different
equations for carry signals c¢; to c; with respect to the
corresponding ones in [8]. These equations are derived as
Eqns. 1-3, where c; <1 is the generated carry for u, + v, +
G'ho1.0+ ¢, <3, since v, and c, cannot be 1 at once.
The reason is thatc, = uyv; + (u; + vq)c; = u; (viuG'ho1.0) +
v1ugG'y_1.9, Since vyu; = 0 and vyu, = 0. Therefore, c; is in
fact the carry of summation u, + (v, V ¢;) + G';_1.0. Note that
Eqn. 3 includes the modified group propagate signal
P'5.0 = p2 V Gy V Pryg. Also, the fact that g, = 0, and py = u,,
leads to Gy.o = G4, and simpler equation for P',, as in
Eqn. 4.

Figure 3 depicts an RPP realization of such carry signals
and the corresponding sum signals for n =8, where the
preprocessing stage consists of an array of half adders, and
thus leads to (7 + 2[logn]) AG latency. Note that derivation of
s; =h, @G,_1.0 Dc, requires an extra XOR operation,
which does not lengthen the critical delay path (CDP). The
rest of carry equations are described by Eqn. 5, where the
group propagation signals P,_;., (for i > 3) are based on P',.,
(i.e., P10 = Pio1:3P'20)-

Table 2. Modulo-(2" — 5) EAC addition with carry-save
preprocessing

X Xn-1 X5 X,  Xg
Y Yn-1 Y2 Y1 Yo
U Up_1 u, Uy Ug
\' Vi Vo1 vy vy 0
Up_q u, Uy U
\Y Vi1 Vy \ 0
5EAC G'n-10 G'n-10
hyy w. hy hy  h
Cnq c;, Co
S Sn—1 S2 S1 So
_ ’
€1 = UpGp10 (1)
_ ’
€2 = Gy.0 V ProGno1:0 2

C3 = UpVy V UGy V (Up VVy V )Gy

=upvy V(U Vv )Ghogo V (Uz V Vo VGyog0)Cy

=g V P2Gn-1.0 V P2(Gr:0 V PrioGno1:0) V €2Gpo1:0

=g V P2G1:0 V (P2 V €2)Gpo1:0

= Gp0 V (P2 V G0 V PrioGno1.0)Gn-1:0

= G0 V (P2 V G0 V Prg)Gpo1:0

= Ga0 V P'2:0Gn-1:0 3

P'50 = P2V 81V P1Po = P2 VUvy V (Ug V vi)ug
=py Vuy (Ve Vug) =pz Vui(Xeyo V (Xo V ¥0)XoYo)
=P, Vu;(Xo V¥o) “4)

¢ = Gi_1,0 V P_1:0Gp-1:0 (%)

1) Further Speedup of RPP Architecture

Recalling the (6 + 2[logn]) AG latency of the modulo-(2™ — 3)
adder of [8], we can use the technique, therein, to achieve the
same 1AG gain. Eqn. 6 is reproduced from [8], where
u’i—l = Xj—1 VV¥i-1, p,i = uj, and g,i—l = u'i_lvi_l. Therefore,
AGj;_; is reduced to 4AG, since p’; and g'i_; are delivered in
2AG, and thus the total delay for the proposed RPP adder is
also (6 + 2[logn]) AG.

Gii-1 =8 VDigi-1 =8 VP8, (6)
3.2. Corresponding TPP Architecture

The TPP architectures are expected to lead to 2 AG less
overall delay with respect to the corresponding RPP
architectures, as is the case in the TPP modulo-(2™ — 3) adder
of [8]. Therefore, we elaborate here on developing a TPP
modulo-(2" — 5) adder that yields all the sum bits in (4 +
2[logn]) AG, where we use Eqn. 7 that describes the general
TPP carry formula, with the understanding that P_;., =
P,_1.3P';.0. As such the required TPP equations for n = 8 are
described below.

¢ = Gi—1.0 V P_1:0G'n-1si
c1 = go V PoG71

=8o0VPo (g'7 V p7(Ge:s V Pe:s(Gaz V p4:3G2:1)))
¢z = Gy,9 VP'1:0G'722

= G1:0 \ pll:O(G,7:6 \% p7:6(G5:4 \ p5:4G3:2))
c3 = G20 VDP'2:0G'7:3

= Gp1 VP21 (go \4 po(g'7 V p7(Ge:5 V p6:5G4:3)))
¢4 = G3;0 V P3:0G'7:4

=Gz V pla:z(GLo Vp'10(GreV p7:6G5:4))
s = Gao V ParoG'7:5

= Gg:3 V Pa3 (G2:1 \% p'2:1(go Vpo(g', VvV p7G6:5)))
¢ = Gs;0 V Ps:0G'7:6

= Gs.4 V Psia (G3:2 \ p’3:2(G1:0 \4 pl1:0Gl7:6))
¢7 = Ge:o V Pe:08’,

= Geg:5 V Pe:s (G4:3 \4 p4:3(G2:1 vp',,(8V pog'7))) @)

The corresponding circuitry is depicted by figure 4,
where the delay figures are indicated along the data paths. In
particular, s; and sg are delivered in 11AG and s, in 12AG,
while the other sum signals are available at 10AG. The reason
for the extra delays for s; and sg is 1AG delay of g/, with
respect to other g; signals that leads to 5AG delay of Gy.,, and
that of s, is due to the extra XOR. The former can be fixed
via implementing Eqn. set 8 and the latter by Eqn. 9.
Regarding s,, one of the two possible sum values fo G,,_;.q =
Or or 1 (ie., hy @ Gy or hy @ Gy + Py) is selected by a
multiplexer, and thus As, = 2AG + AG;_,,,, as the other s;
outputs (see figure 5). As for g7, the modified equation
(i.e., Eqn. set 8) delivers it in 3AG, and thu Gy.; s is available
in 4AG, as other G;.;_; signals.

g7 =87,VVg=Uu;v;Vvg = (XZ @ y7)v7 V X7y7
= (X7 Vy7)V; VX7y7 = vgVu';vg

Go.7 = 8o V Po8&7 (3

s2=h; ®Gp1.0DC,
=h, @ Gp_1.0 D (Gi:0 V Pr.oGp—1:0)
=h, @ (Gp-1:0G1.0 + Prio + G1:0Gpo10)




Gh. Jaberipur and H. Ghasemi Motlagh: The Impact of Excess-Modulo Representation of Residues ...

= (hy @ G0 + Pro)Gp1,0 + (hy @ G1.0)Gpq.0 ©)

[ " A A oAk

IR NI
2AG " " " o " " i N
nsF{/ flg MSP /5 |u en |1I; /13 l,'u /1 |u1)1r1 0

i) rf}@

206 “

206G
' h; ‘
| |
G £y X g
h f 1 AL
26 : :

—
—
i
-—
L -
-—
—

Figure 3. The proposed RPP modulo-(2" — 5) adder

Delay
A4 A A N A [ T R T A )

N N AR AN

446 ! peh peh eh H gh peh
e

: Aff!‘lr' e PGy

=
{—
D

206

206
v \ ¥ ¥ ¥ v
5 5 5 5 5 5 5

206

Figure 4. The proposed TPP modulo-(2" — 5) adder

(Regular Paper) 51

P1  Po

Figure 5. Modification for the terminal part of the s, path in
figure 4

3.3. Addition of Two Excess-Modulo Residues

Most of RNS applications require modular addition and
multiplications, where at least one operand is furnished via
input data, which is therefore normally represented
(i.e., single representation of residues). In such cases, Eqn.
set 10 is meant to show that excess-modulo representation of
the other operand does not jeopardize the resulted residue,
where A € [0,2" — 5], Be [2" —5,2" — 1], and B’ =B — (2" —
5), represent the normal representation of B. However, the
same analysis fails for the case of both operands in excess-
modulo representations, which can be handled as follows, in
hypothetical cases of occurrence.

|A + BlZ"—S = |A + B, + Zn - 5|2ﬂ_5 = |A + B’lzn_s,
|AXB|2n_5 = |AX(B’+2H—5)|2n_5 = |AXB’|2n_5 (10)

The excess-modulo operand pairs 2" —§, and 2" —§,,
where 1 < §,,8, < 5, should be examined for possible wrong
sums. Let A+B=G,_1.0Wy_1 ..Wg, and S =s;sp_;..S0 =
Wp_1 --Wq + 5Gy_1.9. Therefore, s, =wy_jch_1 =(hp_; @
Gp_2:0)Cn—1, Where all the required three operands are
available in the RPP and TPP realizations of figure 3 and 4.
On the other hand, s,_;..syo =|A+B|yn_g = 2" - &, + 2" —
8,|,n_s denotes the sum that is produced by the proposed
adders, where the EAC = G',,_;., = 1. Therefore, Eqn. set 11
holds, where the cases of S = 2" (i.e., Se{2",2" +1,2" +
2,2™ + 3}), denoted by s, =1, are not valid, and should be
corrected by another subtraction by 2" —5, or actually
addition by 5. However, this correction act affects only the
four least significant bits of the sum (i.e., s3s,5:5¢), as is
justified by the content of table 3.

S=20—§, +2"—

8, —(2"—5),2"-5<S<2"+3  (11)

Table 3. Two excess-(2" — 5) operands

A B $35,81Sg | S'35'28'1S'y
2" — 4,20 —1 0000 0101
2 —3,2" -2 0000 0101
2n—3,2" -1 0001 0110
20 —2,2" -2 0001 0110
2" —2,2"—-1 0010 0111
2" —1,2" -1 0011 1000

Eqn. set 12 describes the corrected sum bits s{ (0 <i < 3)
in terms of the original sum bits s;. Note that s, = 0 in other



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2015

cases that are not listed in table 3. Therefore, additional
latency of the correction logic is 4AG.

o 1o _— r_ _— ro_
S'o =50 @ Sp,S'1 =515, V(S1 D Sg)Sn,S'2 =525, VS150Sn,S'3 =
S35, V S1S0Sn (12)

4. Evaluations and Comparisons

Recalling the modifications to figure 4 that was explained in
Section 3.2, the overall latency of the proposed TPP modulo-
(2™ — 5) adder is equal to the desired (4 + 2[logn])AG in the
practical cases, where at most one of the operands is excess-
modulo. Also that of the RPP realization of figure 3 is
(6 + 2[logn])AG. Therefore, the proposed adders are latency
balanced with the corresponding previous modulo-(2" — 3)
adders of [8]. The gate level delay and area measures of the

52

terms of time constraints of the synthesis tool, for n €
{8,16,32}, respectively. These results confirm the latency
balance between modulo-(2" —3) and -(2" —5) channels,
where the area consumption and power dissipation are also
compatible. The corresponding measures for the least met
time constraint are compiled in tables 5-7.

Table 4. Analytical gate-level performance measures

Design Delay (AG) Area (AA)
RPP (2" —5) 6 + 2 [logn] 3n [logn] + 7n + 2
TPP (2" —5) 4 + 2 [logn] 3n [logn] + 7n+ 7
RPP (2" — 3) 6 + 2 [logn] 3n [logn]+ 7n—6
TPP (2" — 3) 4 + 2 [logn] 3n [logn] + 8n—10

Table 5. Synthesis results forn = 8

reference and proposed adders are listed in table 4. To Design Delay (ns) | Area (um?) | Power (uw)
confirm the results, therein, we have coded function of the RPP (2" —5) | 0.5897 19695.16 650.87
. . n__
four adders, perform correction tests, and simulated the TPP (2" — 5) 0.5499 19150.68 616.61
. L . RPP (2" —3) | 0.5499 17220.08 585.71
corresponding circuits by TSMC .9 um Synopsys Design TPP (2" —3) | 0.5498 20376.62 62414
Compiler. Figures 6-8 depict the area and power curves in
720
24000 .
22000 —Rpp,2*n-5 — 620 Rpp,2*n-5
20000 Topp,2"n5 ;5_ Tpp,2*n5
T 18000 1 —Rpp,2°n-3 g e —Rpp,2°n-3
E 16000 oD, 3 a0 pp.n
= 14000 Tpp-2"n-3 220 Tep 203
£ 12000 N
10000 M 220 T
—
BOOD
6000 120 - _ )
0507 0511131517 1521 23 25 05 0y 08 11 13 15 17 18 21 23 23
Time Constraint{ns) Time constraint(ns)
Figure 6. Area and power comparisons for n = 8
1600
50000 Rpp,2*n-5 ——Rpp,2"n-5
45000 Tpp,2°n5 1300 \ Tpp,2"*n-5
.<.E 40000 = ——Rpp,2*n-3
g asoo0 Z 1000 fon
) = 270
5 30000 ¢ 00 ep
2 25000 ]
20000 400
15000 100
05070911131517192123252723 0507 09 11 13 15 17 19 21 23 25 27 29
Time Constraint(ns) Time constraint(ns)
Figure 7. Area and power comparisons for n = 16
80000
——Rpp,2*n-5
85000 2700 PR
80000 Tpp,2"n5
75000
& = 2200 - .
£ 70000 ) \ Rep,2%n-3
= 65000 B Tpp,2*n-3
L 60000 £ 1700
< 55000 &
50000 1200
45000
40000 700

070911131517 1521232527 29

Time Constraint(ns)

07y 05 11 13 15 17 1% 21 23 25 27 19

Time Constraint(ns)

Figure 8. Area and power comparisons for n = 32



Gh. Jaberipur and H. Ghasemi Motlagh: The Impact of Excess-Modulo Representation of Residues ... (Regular Paper) 53

Table 6. Synthesis results forn = 16

Design Delay (ns) | Area (um?) | Power (uw)
RPP (2™ — 5) 0.7000 39286.79 1301
TPP (2" —5) 0.6999 45391.73 1486.8
RPP (2™ — 3) 0.6500 38553.01 1098.4
TPP (2" — 3) 0.6499 44467.15 1350.8

Table 7. Synthesis results for n = 32

Design Delay (ns) | Area (um?) | Power (uw)
RPP (2" — 5) 0.89 91145.98 2822.4
TPP (2" — 5) 0.85 84412.00 2460.2
RPP (2" — 3) 0.90 82295.13 2363.9
TPP (2" — 3) 0.79 87038.07 2602.3

5. Conclusions

RNS applications can be realized to show better figures of
merit (especially performance) in case of balanced moduli
set, where the latency of all the computation channels are
almost equal (i.e., at most 1AG difference). Modular addition
is in particular of interest, where parallel prefix (3 +
2[logn]) AG adders have been presented for moduli set
{2" —1,27,2™ + 1} [2], and also modulo-(2" — 3) adders with
(4 + 2[logn]) AG performance [8]. Additional moduli of the
form (2™ — §) are desirable to accommodate larger dynamic
ranges, provided that (4 + 2[logn]) AG adders are feasible.
We presented a modulo-(2" — 5) parallel prefix adder that
meets the latter performance constraint. This was shown via
gate-level analysis that was confirmed by synthesis results.
Such performance was achieved at marginal penalty in area
and power measures.

As for the relevant future work, for extending the
dynamic range while keeping the whole moduli set balanced,
we plan to study the design and implementation of
compatible modulo-(2™ + 3) and -(2" + 5) adders.

References

[11H. Ahmadifar, and G. Jaberipur, "A New Residue
Number System with 5-Moduli Set: {229,249 43,29 + 1},"
The Computer Journal, to appear.

[2]R. P. Brent, and H. T. Kung, "A regular layout for
parallel adders," IEEE Trans. On Computers, vol. C-31, no.
3, pp. 260-264, Mar. 1982.

[3] P. M. Kogge, and H. S. Stone, "A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations," in IEEE Transactions on Computers, vol. C-22,
no. 8, pp. 786-793, Aug. 1973.

[4] S. Knowles, "A family of adders," Proceedings 14th
IEEE Symposium on Computer Arithmetic, pp. 277-281, June
2001.

[5]R. Ladner, and M. Fischer, "Parallel prefix
Computation," J. ACM, vol. 27, no. 4, pp.831.838, Oct. 1980.

[6] G. Jaberipur, and S. Nejati, "Balanced Minimal Latency
RNS Addition for Moduli Set {2 —1,2™, 2"+ 1}," 18th
International Conference on Systems Signals and Image
Processing (IWSSIP), pp. 1-7, 16-18 June 2011.

[7]1L. Kalampoukas, D. Nikolos, C. Efstathiou, H. T.
Vergos, and J. Kalamatianos, "High-Speed Parallel-Prefix
Modulo 2™ — 1 Adders," IEEE Trans. Comput. , vol. 49, no.
7, pp. 673-680, July 2000.

[8]G. Jaberipur, and S. H. F. Langroudi,"
(4 + 2logn)AGParallel Prefix Modulo-2" — 3 Adder via
Double Representation of Residues in [0, 2]," in IEEE
Transactions on Circuits and Systems II: Express Briefs, vol.
62, no. 6, pp. 583-587, June 2015.

[91B. Parhami, Computer Arithmetic Algorithms and
Hardware Designs, Oxford Univ. Press, 2000.

[10] R. Chokshi, K. S. Berezowski, A. Shrivastava, and S. J.
Piestrak, "Exploiting residue number system for power-
efficient digital signal processing in embedded processors,"
in Proc. of the international conference on Compilers,
architecture, and synthesis for embedded systems (CASES),
pp. 19-28, Oct 2009.

[11] C. Efstathiou, H. T. Vergos, and D. Nikolos, "Fast
Parallel-Prefix Modulo 2™+ 1 Adder,” IEEE Trans.
Comput., vol. 53, no. 9, pp. 1211-1216, Sept 2004.

Ghassem Jaberipur is an Associate
Professor of Computer Engineering in the
Department of Computer Science and
Engineering of Shahid Beheshti University,
Tehran, Iran. He received his BS in electrical
engineering and PhD in  computer
engineering from Sharif University of
Technology in 1974 and 2004, respectively, (where he is
recognized as one of the 50 distinguished graduates for years
1966-2016), MS in engineering from UCLA in 1976, and
MS in computer science from University of Wisconsin,
Madison, in 1979. His main research interest is in computer
arithmetic. Dr. Jaberipur is also affiliated with the School of
Computer Science, Institute for Research in Fundamental
Sciences (IPM), in Tehran, Iran.

E-mail: jaberipur@sbu.ac.ir

Hassan Ghasemi Motlagh received his
B.Sc. degree in Computer Engineering
from Mazandaran University of Science
and Technology, Mazandaran, Iran, in
2014. Now, he is working on his M.Sc. in
& Computer Architecture at Shahid Beheshti
i University. His research interests include
Computer Arithmetic, RNS.

E-mail: h.ghasemimotlagh@sbu.ac.ir

L
o

‘\lr;/
o T

Paper Handling Data:

Submitted: 07.11.2016

Received in revised form: 09.12.2016

Accepted: 28.12.2016

Corresponding author: Dr. Ghassem Jaberipur,
Department of Computer Science and Engineering,
Shahid Beheshti University, Tehran, Iran.




~
™

(
1 — Computer

Scienceg Engineering

The CSI Journal on

Computer Science and Engineering
Vol. 13, No. 2, 2016

Pages 54-60

Regular Paper

A Low-Power Hierarchical FInNFET-Based SRAM

Somayeh Maabi'

Sina Sayyah Ensan’

. . .3
Mohammad Hossein Moaiyeri

Shaahin Hessabi’

'Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
*Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

3Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

In this paper, a low-power energy-efficient hierarchical SRAM design capable of working in near-threshold region is proposed. The
proposed method enhances the noise margin using an extra circuitry, while restricting the hardware redundancy by sharing the additional
circuitry between each two SRAM cells in a hierarchical style. The results of simulating the FinFET-based SRAM cells using Synopsys
HSPICE at 10nm technology node indicate that the proposed design reduces, on average, the power-delay product, read and write delays by
14.34%, 2.37% and 8.54%, respectively, and significantly improves the static noise margins even in the presence of major process variations.

Keywords: Static Random Access Memory (SRAM), Multiport Memories, Low-Power Design, Static Noise Margin (SNM), FinFET,

Nanoelectronics.

1. Introduction

Nowadays, by scaling the technology node, the variability
concerns have become very important. This is due to (i) very
small geometrics where even small variations can cause big
changes, (ii) reduced power supply voltage, where Vpp level
is very close to transistors threshold voltage [1].
Accordingly, the SRAM cell stability depending on
transistors strength ratios has become one of the biggest
concerns in VLSI design [2]. With the ever-increasing short
channel effects, parametric variations and cache capacity,
SRAMs have become very sensitive to variability. As a
result, a new trade-off between the variability, power
consumption and performance parameters has come in VLSI
design [2].

Ignoring redundancy, each cell must work under worst-
case variations. In the conventional 6T SRAM, strength
ratios of devices must be adopted such that cell static noise
margin and write margin are both upheld, while they are in

conflict with each other. During the read state, it is desirable
to have stronger storage inverters and weaker pass
transistors, while during the write state it is desirable to have
stronger access transistors and weaker storage inverters. This
fine balance of transistor strength ratios can be easily
affected by process variations, which will specifically
degrade cell stability and read margin in nanoscale
technologies [2].

In order to consider variability problems, many design
techniques have been proposed to enable low-voltage
operation for SRAM cells. A higher supply voltage can be
used for SRAM cells such that the SRAM voltage does not
decrease with the technology to meet the desirable margins
[3]. However, this approach does not provide the demanded
low power consumption. Another approach is to use dynamic
voltage sources such that SRAM voltage source can
dynamically change during different states [4]-[5]. This
technique increases the design complexity, while it improves
the cell stability and reduces the standby leakage.



S. Maabi, S. Sayyah Ensan, M. H. Moaiyeri and S. Hessabi: A Low-Power Hierarchical FinFET-Based ... (Regular Paper) 55

Scaling the technology node has also led to a major
power consumption challenge. The importance of power
consumptions is more prominent in the systems with
restricted energy sources. Reducing the supply voltage is
considered as one of the most effective ways to decrease the
power dissipation. This is achieved by sub-threshold or near
threshold circuits design which enhances energy efficiency
[6]. In this way, leakage power is also considerably reduced
due to less voltage difference between drain and source of a
transistor, which suppresses the DIBL effect, and
consequently reduces the OFF current [7].

On the other hand, reducing the supply voltage results in
higher propagation delay and slower circuits. At the present
time, power saving is becoming very crucial in many circuits
and applications that do not require very high speed, such as
memories, nano-sensors, radio frequency identification and
implantable medical devices. These applications may be in
hold or stand-by modes most of the time, and need very low
energy consumption and long battery lifetimes [8]. In
addition, investigations have demonstrated that the minimum
energy can be achieved in the sub-threshold region. In other
words, appropriate power-delay product (PDP) can be found
in the near-threshold region [9]. In the sub-threshold region,
the drain current is defined by Eq. 1 [10].

W Vs —Vin Vs
Isub = HCy, TelB# e n [l—e b J (1)

where, n =1 +% is the sub-threshold factor and @ris the

ox

thermal voltage.

A specific and important state of a transistor in a
nanoscale digital circuit is the OFF state, where Vgs=0V and
Vps=Vpp. The drain current in this state, which is denoted as
lore, is given by Eqg. 2. It can be concluded from Eqg. 3 that
the lore leakage current is reduced exponentially by
decreasing the supply voltage.

-V,

W 5.0 74

~ X é
IOFF_/ucox Le ¢re

O]

On the other hand, reducing the supply voltage to
near-threshold region considerably increases the circuit
delay. The propagation delay in the sub-threshold region is
almost given by Eq. 3, where K is a suitable fitting
coefficient.

KCV,y, 3
UC,, WL e1<3¢]_2 e(VGs* )Ny

ty =

Due to a significant speed reduction, sub-threshold
circuits are often unsuitable for high-performance
applications. However, they are practical for some
applications, which do not require high-frequency operation
but demand ultra-low power consumption, such as wireless
sensor networks. However, increase in variations in
sub-threshold region can degrade circuit stability [17].

SRAMs occupy a considerable part of the area and
dissipate a large amount of power in VLSI chips [16].
Therefore, reducing the power consumption in SRAM cells
is a vital issue in low-power VLSI design. As SRAM cells

are often in the hold state, decreasing the static power
dissipation of SRAM cells considerably contributes in
reducing the total power consumption of a chip. Operating of
SRAM in the sub-threshold region can dramatically reduce
the leakage power, but it degrades the speed and static noise
margin (SNM) of the cell, which should be considered in the
design methodology [8].

In order to meet the challenges imposed by transistor
scaling, different device structures have been explored as
alternatives to the conventional bulk MOSFET. However,
considering these technologies, FinFET is more appropriate
for scaling the MOSFET to near 10nm feature size [11].
FinFETs demonstrate superior gate control on the channel,
lower sub-threshold swing, lower short channel effect and
higher scalability. However, width quantization is a
challenge in FinFETS, which restricts the design possibilities
of FinFET-based circuits such as SRAMs that need transistor
sizing for correct operation and robustness. This constraint
should be carefully considered and compensated in the
design procedure [12].

In this paper, a new hierarchical SRAM cell design,
denoted as HSRAM, is proposed with improved SNM and
static and dynamic power consumption metrics. The number
of transistors in every cell is decreased compared to its
counterpart presented in [14], by multiplexing the additional
transistors between each two cells, which reduces the power
and energy consumptions of the proposed design.

The rest of this paper is organized as follows: In the next
Section related work is reviewed. The proposed SRAM cells
are introduced and described in the Proposed Design Section.
The simulation results and comparisons are given in
Simulation Result Section, and finally Summery Section
concludes the paper.

2. Related Work

Designing low-voltage memories is demanded to reach lower
power consumption. The classic 6T (6-transistor) SRAM cell
is shown in figure 1. Assume that the X and Y nodes have
stored 0 and 1 values, respectively, as illustrated in figure 1.
In this case, M1 and M4 are ON and M2 and M3 are OFF.
During the hold time, when WL is 0, M5 and M6 are OFF. In
this state, the leakage current through M3 can proportionally
lead to failure, since in the idle mode the leakage current
through M2 and M5 causes a small increment in the voltage
of node X, which is not acceptable due to small SNM in sub-
threshold region.

WL ‘0’

VDD
—4 M4

Y N <4
L S
Y M6

_|]\B

BL Jr

Figure 1. 6T SRAM cell

BLB



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 56

During the read cycle, when WL=1 and BL=BLB=Vpyp,
M5 and M6 are ON and consequently, BL will be discharged
through M1 and M5, and read operation is accomplished. In
this situation, due to existence of some leakage through M3
there is a drop in Y, which results in reading speed
degradation and possible data flips on storage nodes. In
addition, transistor sizing is not adequate to prevent failures,
especially in near- and sub-threshold regions [13].

The 11T SRAM cell [14], illustrated in figure 2,
improves the whole energy consumption, the ability of
working in sub threshold supply voltages the SNM of the 6T
SRAM cell but with the penalty of higher number of
transistors and larger area. However, the power consumption
specially static power, is the critical challenge in designing
digital systems especially in SRAMs.

As the 11T and 13T SRAM cells [14] focus on reducing
the static power consumption and improving the performance
at sub-threshold region, we discuss these cells in more detail.
In the 11T cell, M2, M4, M5 and M6 transistors keep the
aforementioned characteristics of the 6T cell. However, the
size of the M1 and M3 transistors are scaled down equal to
the size of the p MOS transistors. In addition, separate BL,
WL and RDWL (read word line) lines are considered in this
cell, which leads to separated read and write ports.

WL RDWL

vDbD ‘ €M10
o

m2p— [ me G w
& e M2
M5 X um f [
Node
M— W — we
BL
I BLB ! RDBL

Figure 2. The 11T SRAM cell [12]

During the hold state, the WL and RDWL lines are not
activated. Suppose the situation when Y=0 and X=1, as
described before for the 6T cell. In the additional 5T
circuitry, M12 is OFF and the state of M11 depends on the
voltage at node Y. When Y=0, M8 is OFF and M9 is ON,
and consequently the gate of M11 is charged. Therefore, a
path is created through M11 that connects the node YN to
zero. The transistors of the added 5T circuit have minimum
size, except the access transistor (M12) that has a larger size.

The boost capacitor (CB) that connects the source of M9
to RDWL is a substantial part in this cell. Given that Y=0
(during the hold and write times) and RDWL is connected to
ground, CB starts to charge up to Vpp. Though, the amount
of charging is limited by M9 and finally the maximum
voltage reaches Vpp/2. Thus, the gate of M 11 is connected to
a voltage of approximately less than Vpp/2 and YN
discharges to the ground slowly.

When RDWL is selected, the source of M9 rises to 1.5
Vpp and the gate of M11 connects to a voltage higher than
Vpp. This enhances the read current by an order of
magnitude as compared to the classical 6T SRAM cell,
which leads to faster read operation. In the other case when
Y=I1, M8 is on and M11 is off, which makes the reading path
isolated from the ground. Although the leakage through M11

causes some reduction in the RDBL voltage, this leakage has
no effect on YN or RDBL because of connecting M9 to
ground via MS.

To suppress the channel leakage path through MS, a
modified topology denoted as 13T cell is suggested in [14].
This cell which has 13 transistors is shown in figure 3. When
Y is high the source of M8 is connected to ground through
the added inverter, but when Y stores “0”, the source of M8
is connected to Vpp, which suppresses the leakage path in
M8 during the read cycle.

WL RDWL
VDD
Mlp— —dql M4
M12
L
M5 X % e M11
miJ—  t—[™ms
BL BLB RDBL

Figure 3. An improved 11T SRAM cell (13T SRAM) [12]

3. Proposed Design

Design of low-voltage digital circuits operating in near- or
sub-threshold regions has emerged as a low-power solution
for applications with energy constraints. As SRAM memory
constitutes a significant percentage of the whole power and
area of most digital chips, reducing its power consumption,
especially at the stand-by mode, is quite important.

As stated before, the 6T SRAM cell is not suitable for
low-voltage applications as it has a small SNM. Accordingly,
some effective solutions for improving its SNM in low
voltages have been presented in the literature [14]. Despite
the improvements in SNM, adding 5 to 7 transistors to the 6T
SRAM cell increases the hardware overhead, and
consequently the delay and power consumption in the
memory system. As a result, for designing an SRAM that
maintains the aforementioned SNM improvements, while
restricting the hardware redundancy, delay and power, a new
hierarchical SRAM (HSRAM) cell is proposed in this paper.
The proposed SRAM cell is shown in figure 4. In the
proposed design, the hierarchical style also reduces the cell
power consumption by use of a multiplexer in the reading
path. In this design, due to separating the reading part from
the cell, no current is drawn for reading from the cell. Unlike
the 6T cell, the read SNM of the proposed cell is not
degraded, and is similar to its hold SNM.

As illustrated in figure 4, for reducing the hardware
overhead in the 11T SRAM, instead of adding five transistors
for each cell, these 5 additional transistors can be shared
between each two cells. In this design, the read lines are
connected to each other, and the write lines for each cell are
separate, as the write ability should be provided for every
cell in an SRAM. In order to read from these SRAM cells, a
transmission gate-based 2:1 multiplexer is utilized, which
connects the SRAM core cells to the read stage. It is worth
mentioning that by connecting the read lines, the data stored
in each core cell does not become faulty and it is not
corrupted during the read procedure.



S. Maabi, S. Sayyah Ensan, M. H. Moaiyeri and S. Hessabi: A Low-Power Hierarchical FinFET-Based ... (Regular Paper) 57

In the read state, the read line is activated for each of the
two cells, and the multiplexer connects the corresponding
core cell to the 5-transistor read stage based on the selector
signal. If the selector signal becomes ‘0’, the first cell is
chosen; otherwise, the second cell is selected. It is
noteworthy that the transmission gate structure of the
multiplexer provides low-resistive paths and full-swing
signals for the read stage.

In addition, the additional inverter existing in the original
circuit [14] is omitted in the proposed design as it does not
have any considerable effect on the static power, while
omitting these two transistors reduces the overall switching
power of the SRAM. It is worth pointing out that sharing the
read stage also leads to a considerable reduction in the read
bit line (RDBL) and read word line (RDWL) capacitances,

and consequently results in lower dynamic power
consumption and higher speed.
WLO
VDD
M2]py o[ me . RDWL
1
M5 e 1
L o
miJH Yims | T
S0
M10
WLl q[ vs
755 M1L
M2 M4
1
M5 ! 1
wm]H Yims | T
st RDBL
BL BLB

Figure 4. The proposed SRAM (HSRAM)

By categorizing the memory cells and integrating the read
line, changing the addressing model of the SRAM cells is
necessary. As there is one read line activation for each two
cells, according to the conventional models, some clusters of
cells may be activated and put on the output simultaneously,
which leads to data collision. For solving this problem, the
address is divided into two 2-bit parts.

The least significant bit is used as the selectors of the
clusters. This bit can be 0 or 1, which will select one of the
two cells of each cluster, and the remaining bits will choose
the corresponding cluster, and accordingly the corresponding
cell is selected to put its data on the output line. These two
addressing models are illustrated in figure 5.

4. Simulation Result

The circuits are simulated using the HSPICE simulator tool
with 10nm LSTP FinFET technology [15] at 0.45 V supply
voltage and at 60°C temperature. Some of the important
parameters of the utilized model are given in table 1. In the
simulations, all the SRAM’s transistors have the minimum
size except the ones in the 6T conventional SRAM cell,
which have multiple sizes in order to have a good Read
SNM. The capacitors of the BL, BLB, RDBL and RDWL
lines are assumed as 10fF for a basic design. The power
consumption, read and write delays, average case power
delay product (PDP), best case PDP, worst case PDP and
SNM of the proposed SRAM cell are calculated and
compared with those of the other low-power SRAM cells.

—L LT
_M_ @
— L] |

| S —

Address [(n-1):0]
Address [0]
Write Li i i
rite Line Read Line Write Line Read Line

Address [(n-1):1]

@) (b)

Figure 5. Two addressing models: (a) Conventional model
(b) HSRAM Model

Table 1. The FinFET parameters

Parameter | Description Value

L, Physical Gate Length 14 nm

Hgin Fin Height 21 nm

Trin Fin Thickness 8 nm

EOT Equivalent oxide thickness 0.68 nm

Nbody Doping of the body 2.5x10%cm?

N Doping of the source-drain regions 3 x 10° cm”

O, }rVork.Function of the gate for N-type 442 eV
ransistor

o, }FVork‘Function of the gate for P-type 475 eV
ransistor

The simulation results for all SRAM cells are given in
table 2 Average PDP is the multiplication of average power
and average delay. Best case PDP stands for the product of
the average power and best delay, while worst case PDP
stands for the product of the worst dynamic power and the
worst delay. According to the results, the proposed cell has
lower power, write delay and PDP than the other designs.
This is because of different structure and operation as
compared to 6T, and lower number of transistors and less
line capacitance in comparison with 11T and 13T cells.

Table 2. The simulation results at Vpp=0.45V

SRAM Average Power Static Power Read Delay Write Delay Average C_:ase Best Ca'_se PDP Worst Case
(nW) (pW) (ps) (ps) PDP (aj) (aj) PDP (aJ)
HSRAM 24.81 286.04 311.85 173.11 5.3080 3.8930 19.72
6T 25.60 307.30 319.46 212.64 6.6243 4.7376 20.86
11T 52.91 274.98 244.31 173.86 10.216 8.4497 33.16
13T 36.81 298.11 245.08 177.27 7.1120 5.8346 23.08




The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016 58

Read access delay, which is the time required to
discharge RDBL to “0.8xVpp” after RDWL reaches to
Vpp/2, is one of the metrics in SRAM cells. During read
operation, RDWL is activated and the access transistor is
turned on. If the data which is going to be read is ‘0’, then
RDBL will be discharged to ground; and if the data is ‘1°, no
change happens in RDBL. According to the results, the read
delay access of the proposed HSRAM is 27.24% and 21.65%
longer than those of the 13T and 11T SRAM cells,
respectively, due to the multiplexer stage, but 2.37% lower
than the 6T SRAM since it has a separate read circuitry.
However, the proposed method considerably improves the
power consumption and PDP metrics as compared to other
cells.

Another important metric in evaluation of SRAM cells is
the write access delay, which is defined as the time required
to charge the node that has stored 0 to Vpp/2 after WL
reaches to Vpp/2. During write operation, WL is activated
and access transistors are turned on. Then, new data is
transferred by these transistors to cell. Write delay access of
the proposed HSRAM is 2.4%, 0.43% and 22.8% lower than
the 13T, 11T and 6T cells, respectively. In the 6T SRAM, in
order to have read ability, the size of transistors are different,
and therefore, they do not have the same strength. On the
other hand, as the pull down transistors have higher strengths
than the access transistors, the write delay gets longer.

The delay, power consumption and PDP of the cells
versus supply voltage are plotted in figure 7 and figure 8§,
respectively. According to the results, the proposed cell has
lower power consumption and PDP as compared to the other
cells in a wide range of supply voltages, especially at lower
voltages.

Static noise margin (SNM) is an important metric in
evaluating the robustness of an SRAM cell. The SNM
parameter is calculated as the diameter of the biggest square
found in the butterfly graph of a SRAM cell. For analyzing
SNM, Monte Carlo analysis with Gaussian distribution with
10% variation at the 3-sigma is conducted. Process variations
are considered in the Fin height, Fin width and channel
length as the important FInFET device parameters. Finally,

the diameter is measured in the butterfly graph. The butterfly
graphs indicating the hold and read SNMs of the propose
SRAM cell are illustrated in figure 7.

0.457

)
w

Voltage on node 'ng' (V)
@
n

nig
WS

01
LU

@
<

Vaoitage on node 'q° (V)
2 q'{¥)

@

—6— 6T = =& = 13T ===0---HSRAM 11T
200

160

120 A

Average Power (nW)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Power Supply Voltage (mV)

Figure 6. Average Power of the FinFET SRAM cells
(T=60°C)

—6— 6T = =& = 13-T ==---- HSRAM 11-T

50 U

Power Delay Product (al)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Power Suply (mV)

Figure 7. PDP of the FiInFET SRAM cells (T = 60 °C)

L

- |
) |
- 031k
z | — ,
= ... I
-
= _
=
=
= o
: [ |
& - —
Z 018 L L |
s (- |
. |
I |
L W
—
—
L

-f

P

@
T - =
S

=
3t

=

R

(b)
Figure 8. The butterfly curves of the proposed cell (a) Hold (b) Read



S. Maabi, S. Sayyah Ensan, M. H. Moaiyeri and S. Hessabi: A Low-Power Hierarchical FinFET-Based ... (Regular Paper) 59

Table 3 gives the hold and read SNMs, as well as their
variations for the SRAM cells. According to table 3, the hold
SNMs for all cells are almost comparable. In the read state,
the proposed cell as well as the 11T and 13T cells has SNMs
equal to their hold state as there is no charge sharing between
the separated read bit line and the main cell. However, in the
6T SRAM cell, due to connecting the cell to BL and BLB,
the pulling current (charge sharing) from the cell decreases
the read SNM.

Table 3. SNM of the SRAM Cells (Vpp= 0.45 V)

SRAM Cell | SNM@mV) [ Variation (mV)

Hold

HSRAM 183 34

6T SRAM 182 34

11T SRAM 182 35

13T SRAM 182 35
Read

HSRAM 183 35

6T SRAM 78 41

11T SRAM 182 35

13T SRAM 182 35

5. Conclusion

In this paper, a hierarchical FInFET SRAM cell (HSRAM)
has been proposed. In this design, each two 6T SRAM cells
share an additional five-transistor circuitry to improve design
complexity and power consumption, and achieve higher
SNM and execution speed in sub-threshold region. For
reading from these SRAM cells, each two cells are connected
to the shared read circuitry through a 2:1 multiplexer and
finally to the SRAM output. It is worth mentioning that by
connecting the read lines, the data stored in every cell does
not become faulty, and is not corrupted during the reading
procedure. The SRAM cells have been simulated using 10nm
LSTP FinFET HSPICE model. It was shown that the
proposed structure reduces the number of transistors, line
capacitance, power consumption and PDP as compared to its
counterpart cells.

References

[1] A. Shafaei, and M. Pedram, Energy-efficient cache
memories using a dual-Vt 4T SRAM cell with read-assist
techniques. In2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 457-462, 2016.

[2] L. Chang, R. K. Montoye, Y. Nakamura, K. A. Batson,
R. J. Eickemeyer, R. H. Dennard, W. Haensch, and D.
Jamsek, "An 8T-SRAM for Variability Tolerance and Low-
Voltage Operation in High-Performance Caches,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 4, 2008.

[3] J. Davis, D. Plass, P. Bunce, Y. Chan, A. Pelella, R.
Joshi, A. Chen, W. Huott, T. Knips, P. Patel, K. Lo, and E.
Fluhr, "A 5.6 GHz 64kb dual-read data cache for the
power6tm processor," IEEE International Solid State Circuits
Conference (ISSCC), Digest of Technical Papers, 2006.

[4] A. J. Bhavnagarwala, S. V. Kosonocky, S. P. Kowalczyk,
R. V. Joshi, Y. H. Chan, U. Srinivasan, and J. K. Wadhwa,
"A transregional CMOS SRAM with single logic VDD and

dynamic power rails," Symposium on VLSI Circuits, Digest
of Technical Papers, 2004.

[5] K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D.
Murray, N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, "A
3-GHz 70-Mb SRAM in 65-nm CMOQOS technology with
integrated  column-based dynamic  power  supply,”
International Solid-State  Circuits Conference (ISSCC),
Digest of Technical Papers, pp. 474-611, 2005.

[6] Y. Yang, H. Jeong, S. C. Song, J. Wang, G. Yeap, and S.
O. Jung, "Single Bit-Line 7T SRAM Cell for Near-Threshold
Voltage Operation With Enhanced Performance and Energy
in 14 nm FIinFET Technology," IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 63, no. 7, pp.
1023-1032, 2016.

[7] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand,
"Leakage current mechanisms and leakage reduction
techniques in deep-sub micrometer CMOS circuits,”
Proceedings of the IEEE, vol. 91, no. 2, pp. 305-327, 2003.

[8] M. Moghaddam, S. Timarchi, M. H. Moaiyeri, and M.
Eshghi, "An Ultra-Low-Power 9T SRAM Cell Based on
Threshold Voltage Techniques," Circuits, Systems and
Signal Processing, Springer, vol. 35, no. 5, pp. 1437-1455,
2016.

[91 M. Alioto "Ultra-Low Power VLSI Circuit Design
Demystified and Explained, a Tutorial," IEEE Trans. Circuits
Syst. I, Regular papers, vol. 59, pp. 3-29, 2012.

[10] J. Rabaey, Low Power Design Essentials, first ed., New
York, Springer US, 20009.

[11] J. P. Colign, FInFETs and Other Multi-Gate Transistors,
first edition, Springer, New York, 2008.

[12] S. Kumar Gupta, and K. Roy, Low Power Robust
FinFET-Based SRAM Design in Scaled Technologies,
Circuit Design for Reliability, Springer E-Publishing Inc.,
New York, pp. 223-253, 2015.

[13] O. Thomas, M. Reyboz, and M. Belleville, "Sub-1V,
Robust and Compact 6T SRAM cell in Double Gate MOS
technology,” Proc. IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 2778 — 2781, 2007.

[14] F. Moradi, D. T. Wisland, S. Aunet, H. Mahmoodi, and
Tuan Vu Caol, "65nm Sub-Threshold 11T-SRAM for Ultra
Low Voltage Applications,” IEEE international SoC
conference, pp. 113-118, 2008.

[15] Predictive Technology Model, [Online]. Available at
http://ptm. asu.edu/.

[16] S. M. Salahuddin, and M. Chan, "Eight-FinFET Fully
Differential SRAM Cell with Enhanced Read and Write
Voltage Margins,” |IEEE Transactions on Electron
Devices, vol. 62, no. 6, pp. 2014-2021, 2015.



The CSI Journal on Computer Science and Engineering, Vol. 13, No. 2, 2016

[17] Y. Yang, J. Park, S. C. Song, J. Wang, G. Yeap, and
S. Q. Jung, "Single-Ended 9T SRAM Cell for Near-
Threshold Voltage Operation with Enhanced Read
Performance in 22-nm FinFET Technology," IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 11, pp. 2748-2752, 2015.

Somayeh Maabi received the B.S. and
M.S. degrees in Computer Engineering
from Islamic Azad university of Qazvin
branch, in 2008 and 2013, respectively. She
is currently a PhD candidate in Computer
Engineering in Shahid Beheshti University,
Tehran. Her research interests include SoC,
NoC, fault tolerance, embedded systems, and processor
design specially in end nodes of IoT and WSN

E-mail: s_maabi@sbu.ac.ir

Sina Sayyah Ensan Received his B.Sc.
degree in computer engineering from
Shahid Beheshti University, Tehran,
Iran, in 2014. He is currently pursuing
M.Sc. degree in computer engineering
at Sharif University of Technology,
. 1 @i Tehran, Iran. His research interests
include Low Power Circuits and VLSI design
E-mail: sayyah@ce.sharif.edu

Mohammad Hossein Moaiyeri received
the Ph.D. in Computer Engineering from
Shahid Beheshti University, Tehran, Iran
in 2012. He is currently an Assistant
Professor in the Faculty of Electrical
Engineering  of  Shahid  Beheshti
University. His research interests mainly
focus on nanoelectronic circuit design, Low-power VLSI
design, VLSI implementation of MVL and fuzzy logic, and
mixed-signal circuit design.

E-mail: h_moaiyeri@sbu.ac.ir

Shaahin Hessabi received the B.Sc. and
M.Sc. degrees in Electrical Engineering
from Sharif University of Technology,
Tehran, Iran in 1986 and 1990,
respectively. He received his Ph.D. degree
in Electrical and Computer Engineering
from University of Waterloo, Waterloo,
Ontario, Canada in 1995. He joined Sharif University of
Technology in 1996, and is currently an associate professor
at the Department of Computer Engineering. His current
research interests include System-on-Chip and Network-on-
Chip, optical interconnects, and VLSI design and test. He has
published more than 100 refereed papers in the related areas.
Dr. Hessabi has served as the program chair, general chair,
and program committee member of various conferences
E-mail: hessabi@sharif.edu

60

Paper Handling Data:

Submitted: 20.09.2016

Received in revised form: 02.11.2016
Accepted: 12.12.2016

Corresponding author: Dr. Shaahin Hessabi,

Department of Computer Engineering, Sharif University

of Technology, Tehran, Iran.




The

~
(i~

The CS1 Journal on

“1 = Comp uter

gN.Ii.l'lﬂ.i.. ns_mu.rlm_

INFORMATION FOR AUTHORS

final manuscript of the English papers accepted for publication in the CSI JCSE should be prepared in accordance with

this guide. It is, however, strongly recommended that preparation of the initial manuscript also follows the instructions given
here. Manuscript may be in English or Farsi.

1. Paper Organization

Title: The title should be short (at most 15 words) and indicative of the paper contents.
Authors: the authors’ names (initial and last name) and their affiliations should appear next.

Abstract: the abstract should include the problem explanation, methods used for solution, and the significant results; and
should not be longer than 150 words.

Keywords: The keywords should be relatively independent and together optimally characterize the paper. Include 5 to 10
keywords.

Text: the main body of the paper should start with Introduction and end with concluding remarks. All sections and
sub-sections should be numbered. The number for introduction is 1.

Acknowledgement: If required, Acknowledgements appear after the concluding remarks.

References: All publications cited in the text should be presented in the order they are cited in a numbered list of
References following Acknowledgements. In the text refer to references by the reference number in square brackets on
the line.

Appendices: If appendices are necessary, they are placed after the list of References.

Farsi Section: the title, authors’ names and affiliations, abstract, and keywords should also be given in Farsi a separate
sheets (for papers written in English). For the non-Farsi speaking authors, the journal will supply this section.

2. Figures, Tables, Photographs and Equations

Figures and Tables: Each figure or table must have a number and a caption. In figures, the number and the caption
appear under the figure while in tables, they appear over it. The size of text and numbers in tables and figures must be
suitable to allow high legibility. Do not use any type of shading in computer generated illustrations.

Photographs: High quality glossy black and white photographs must be supplied as they are to be reproduced.

Equations: Equations are to be numbered consecutively. The number of each equation should appear in parentheses in
the right-most end of the equation line. Sufficient space should be allowed above and below each equation.

3. References

The format for various types of references should be as follows:

[1] M. A. Ahadi, and M. H. Rahimi, Fuzzy Set Theory, New Jersey, Prentice-Hall, 1995.
[2] M. A. Ahadi, M. H. Rahimi, and A. Fatemi, "Evidence-Based Recognition of 3D Objects,” IEEE Trans. Pattern

Analysis and Mach. Intell., vol. 12, no. 10, pp. 18-25, 1994.

[3] A. Taheri, "On-line Fingerprint verification," Proc, IEEE Int'| Conf. Pattern Recognition, pp. 752-759, 1992.



[4] M. A. Ahadi, On-line Fingerprint verification, Ph.D. Dissertation, University of Tehran, Tehran, Iran, 1994,
[5] M. A. Washington, "The Fingerprint of Malcom X," http://www.dermatologyphicisc.com, June 2004.

[6] International Biometrics Group, http://www.Biometrics.com, May 2003.

. Manuscript preparation

Typing and Printout: The manuscript should be prepared using Microsoft Word and should be printed on A4 size paper
using a laser printer.

Fonts: Use Times New Roman font type. The font size must be 9 for the Abstract and 10 for the main text. All the titles
should be made bold. The paper title must have a font size of 18, first-level sub-titles a size of 14, second-and third-level
sub-titles a size of 12.

Layout: The paper should be typed in 2-column single space format. The top margin for the first page should be equal to
85 mm, each column length should be 87mm, and the spacing between columns 6mm. Only the abstract is to be typed in a
single column format. Two space line must be allowed between the paper title and authors' names, and one space line
should be allowed above each section title or sub-title.

. Paper Submission

Exclusive Submission: Submission of a paper to JCSE implies that it has not been published previously, that it is not under
consideration for publication elsewhere, and that if accepted, it will not be published elsewhere in any language. Explicit
announcement of this matter must be made in a letter to the editor.

Paper Length: The paper is expected to be no longer than 30 pages.

Submission Process: Authors are requested to submit their papers electronically in PDF format at the journal homepage
(www.jcse.ir). All relevant correspondence should be addressed to csi-jcse@ipm.ir.

Review Process: Each manuscript will be reviewed by experts and their constructive criticism will be forwarded to the
authors.

Final Manuscript: After the acceptance of a paper, the authors should provide the final manuscript in PDF and Word
formats. In addition, the authors should sign and submit the form for the transfer of copyright to the Computer Society of
Iran.



FoepelS (w9 pole
Ol Foeals (pazel Sig%y sole 4 i3

-
L‘ L VFAF LY o)let VY ale

Oloal P aaaals Lagil pulis g pale as i

—
[~

FINFET 51 cidio o315 o5 ol po alukis SRAM Jglos Sy

\

Tl el T 6 e (e dans T obesl glew L b Ao

o e R . . Ao
Ol ol 5 e i dtes oRESIS ¢ FgunelS gdigee 9 pole ouSiils
Ol el atnpd garo olRiils «gnalS wdige 0uSis ils*
“ e W @ ae . A Y
Ol el e st Sl oIS (35 (g 0uSidls

US>

oolil L oas asl,l sl g, ol oy il sl oo 1)l 1) ailin] 15 am b ,o 5 culils a8 o 51,0 alids SRAM Jsko o >1)b allia ol yo
el yo Al o9 )3 Jslow 58 o jlae glaciondd 5l sdm 5 J05S1 il b a8 Jbo 55 wims o il | bl g acils o 5LST sla o |
&355d5:55 L Synopsis H Spice l5-8ls 5 5l soliswl L FINFET 5 e SRAM Jolos (g 5lusacts zulis .S o Sgame | (5,58l Sig 580
Ay aed o oS TALY s LYYV UNEXY (g4 o She job |y lie 3B g ales Sl g5, sals @l Jole 45T ams e yLas 10NM

283 Gl b 4 sl Sl jphe o o |y Gals Slim] 295 4ndlo Jolo nl cogdle

sy Al alidlo Lyl g5 aril oS ras g3 b >yl (SRAM) Lyl ol o jws alibl> 2 gunls lods



Foeall (gmiige 5 pole

- Ol Foeals (pazel Sig%y sole 4 i3
L VFAF LY o)let VY ale

|~ S

Olaa! Faals Lagil palis g3 pale as il

-
[~

n - N - & - - . . & - Qo oo
2750 dilowy &1 (g3lgediguiny 2o 59y Wouilo dilowy 2 (39331 Lhuled 3L
Sllas (consld (pm 196 el
ORIl i e LRl ¢ gaalS” pwiige g pole ouSails

ouuS>

@ aiS g 4 Gl co el Cdl o el Cgllas Jlows il anils Jolaie 30 a5 Slewle slaJULS (4051 caws 4 slodile slael i,
aslw S JoSo 00iiS goz o b g5 (27-1) wilog @ osiiS goz alox o)1 50,5 oLl Be{l, 3, B} &j9a) 8 bl polis L (2" 8) ales
20 L el ol Gl e S5l Wiy 00 iiS gz 93,5 e g yio g Glaled Glsie allony bl (755 O 0 45 3500
20 L (27-3) alews 4 oa S aan bt 9 bay 0 o ateiie |y 00l (63959 90 <8 S w36 AG a5 55l 5425(3+2[log n]) AG
3 1, RNS gons Jos Lasosbe ool 009 cialed 90 Jg.05yls Lioles 90 {0, 1, 2} slaoaile ] 1o a5 el oy slginy (4+2[log n]) AG
oy 4y g o0 ar oSmn e (208 5 (1 Jlte lsie ) JUIS (20 Laie o (a0 53 5 00 S gy aiels & (o, (5l -5 o
L olp 3l 0yl cwo 4 Baa U slaea S gen iz s5lwosls g (>lhb 0 b o (slo S5l gg050 (ol 0l aste DalS Wilgs oo {(27-5)
Sl o e 5o 5 xblige ol Lobol w53 33 45 (27-3) oy & 0aiiS gar b slgiiny b 43 51 a5l (4+2[l0G N]) AG
Fis Gmayb ) soleiiig o)k 50 Colus g b Slag S ol onal Cuws 4 SlaslUl i 0,5 ade bap)T 5 il 45 00 S92y (gl o

ol 418,518 00l 0,90 s oo (g lwans SYNOpsis <5 o (sl Design Compiler jl5éls 5 L as™ o

ooy e 5518 1 (6 lpaiginn slilow (slroniiS gaz wilow p 938l Liules 275 wilews 4 0aiiS gox 1 guulS wlols



FoepelS (w9 pole
Ol Foeals (pazel Sig%y sole 4 i3

-
L‘ L VFAF LY o)let VY ale

Olaa! Faals Lagil palis g3 pale as il

-
[~

Sl oslawl b (ludl olS g (uostd’ (5l o (5 S 0L 1 (oo (Sg ) S,
o S 3 ez Sl

ubw}).m‘ ‘Szdasam LsSD\é.A.QAM G)Lﬁlj‘m})
Ol ol ool ! care g ple olXiils ¢ jigaalS cwaige aSiils

ouuS>

Ol ) ot (i QLdl 0l gz o ol jsboas it 1095 5 Slofas Coeal il 1) Ll DY il Uy a5 plaaileles angs o5l
Sleld sles 1)l5 il ol S5 cgr yumass aiS o ] 01,81 s ol )l g able 5 cwlaa] OV 5Ll sl 3 dasls w3 sleaiulys
sbagts; 5l ey ol )3 22l Slacd i plple o)ls pladl slacdled (sl 5 iz » (e ) slakal) g Lo alex |
s dn |y ger cBs Ll ailoass &8l JSie ol J> sl VLS l/.,_>| WS Jae g5 |y &S o Gemmen il Laylh ailys el (SeiS
3= Ol g Sl 51 aST sl ool coliinl (6,0l sl S Julot sl Bres omas a5 Sl o, 5l lie ol jo wlesls

ol 00ld g 1) B (5, Kaix jebay oo solaiuwl Dlandais o pad 4y jgS 00 g, 20 o0 0 40

et e S10aSd Sl s Sz 425 Sl ol Cgr (e 1§ lS ilalsS



FoepelS (w9 pole
Ol Foeals (pazel Sig%y sole 4 i3

-
L‘ L VFAF LY o)let VY ale

Oloal P aaaals Lagil pulis g pale as i

—
[~

SRIRO ‘Sl.bowéoq 39 6*%)5-3,}‘4. b8 ol | I
RATIPRPS SO JUOU B TETNL & SRNCH 1Y A DRI Tt SR INUN [ IR CPRU SR N

ouuS>

5 LS 220 Clus Sllas plxil 6l (6oL g l8lccen ooty cul sl fad Olabss [0 Ll gao90 40 a2 Clus 3 sloJlo o
i 38 Sl oyshie ol )lleS sladsile D)ge a (paes Sl laaxly (Jsene jsb 4 ol Sleriey 5 Ak (550
b eadlie opl il azdly ol3dl pams Clus plosl gl 0,53k JB sla bzl gjlwosly 5 (b s 4y (il )S 059500 Lol ials oo 1)k
CelB b sax silse (sdiginy e )0 5 098 0 ol bim I b pams glhoaiS aex j0 g0, Sa il ColilB it slacobll o)y
ol o auS ce a3 Calies g0l b (slos09,9 sl (g, S sl BB (2300 59990 (oS 5 (g00iiS mer S g 00,5 dlgiion (g, S5k
4 0 s o 5 Sl B 3 5 008 S5 |l e e S5 33 lsisn b Ml stz S o s o anoe
bl 0938l 4 was o plid oy bl ol sl aslie [0S, b g oad slpiing 4l sdgiay slacs e Gl 6l Dglate jlas 0 wogdle

a8l e orbon s 07 51 & o gy sla e 53 (60 Sn b

LSl gy g, ol BB I8lcsiw ( 2uls saiiS xex (5 Ngdn CS 40 ¢ 22 wlas 1 guulS Olods
03« 3 )P &® EoT (5190 Sl w0 (R S



FoepelS (w9 pole
Ol Foeals (pazel Sig%y sole 4 i3

_—P‘.-\
L VFAF LY o)let VY ale

|~ S

Olaa! Faals Lagil palis g3 pale as il

-
[~

e ,S 5l S slaasul jo (w395 LU 2l B hey yere 9 Guwaid

’ . & p

P O e 55 b 2 5950
55 ol (Dl blsb LIS olSCails SgealS 5 (30 (guoige ouSCails

ouuS>

90 2 50 JLed iagh b aass jl ma jeie g aLild (6 pSetiar (ByS Giay Jle olriy 55 (il oo 5l e v 55 bl g4k,
OlnlS 5z slayeiS )l Ktagh (s 5l 4l ol )3 22 ladle @l jl 6 pSetir (A5u Sl pdvsleiel Glaptan 5 Silpe A2 ais;
o | w538 slac s ples oo a5 0518 samail 5 @l ol 5l 55 0l b wuss balS st sand, alie ol jo wiload 4 e
F S pten Laly) 9 Lo Sy sln Gy 9 CwsSy G3lg Sletiun 09d o0 (Blejle ibleiion Lo 2 62K sl 1 036 sladinn) 2 g 3,5 (o
5055 pudlin a5 |2 el oolaiwl ol v 0iloo , ST )15 4l ol ;o M a5 Sl laasine gl dlie .l gauaids pl glas jslbuws

S oo il ool by 4 s ol 1 (oo slaally

» hilr PMC Jos sl S5l MM* oo (b3 )| plee aSed o3 6 pdJos com )98 pitanms (ol Dbl > 1goals lols



FoepelS (w9 pole
Ol Foeals (pazel Sig%y sole 4 i3

-—-P‘.-\
L VFAF LY o)let VY ale

|~ S

Oloal P aaaals Lagil pulis g pale as i

-
[~

b il (551g0 ool (gl diatr - 65 51 G0 2 souple) Nl SO
DVS culils

oL v . Vo . Yo \ .
owudlyy sole awe Jled b elie 7 65 o s9l Sgee

Ol ot ol oSl jignalS g 5y pmsiige oaSitsls'
Sl ol s (IPM) ool sl 2ils olfimgy «j5gunslS pole oaSKiwmgs’
LI i ol K3l spims smsoiige 3 Sl e Sy (oot «Sile gl ouSizils”

ouuS>

5 12l Oloy Getle —adelog g5 ( Joe (nl )3 Nisdi o Dgmime (S0t 1f Slonijls iz Slaptias ladae (n 5 Hly 5l uilrel lse Sl
s sloossilo p b (st iz 59y 2 Sdobey w8l S )l 4y i cpl ayles oo paein 1) aidly S sl sl LS 990 (B pas 555!
5 oile —a—aisg aigy -5 parass G ) ,s a8 el st 43, EORTSA ol 4 slaberaiz oy b digy o550 G ool DVS clils
28,5 (oo o3litul (lojg0 halby g pdsanle; a3l Olyie & Al pe ul (2gy3 jldmo e plnil (ot (652 jasln S B o ) adidhg-a-5ly
A ozl 2 a olass bl cnl )3 s oo gatnpley Gillal e sl Sy dawgs WISy po Sty Cabge b 1) (9031l 45T (el s
L PCG s SIL auslin 050 )5 oo )il lopypiile slass 51 ol laie 4 g 428 5 18 oy 0,90 5Ly syt olows 25 Tas g caalsy gllaiil

leior BN 1) (Brae 55 0 o9 17

owlzial (g5lae glacpile (gl u_ii)éb_; LSLQW'L"#’*’ &y loe 6553l (6 lwdige Ll 6'49; Lg)J.xu,uL.a.a :‘5.\,3.15 Olods






2! SgmolS (ool (i g 33 (Sole 49 i )’M" (SWgo g Pols

\¥a¥ Y o)le-d W o

C:Ylj.ow)lécw w).e‘ﬁ

.......................................... DVS cubB b pilxiol (531g0 g csiilo (gl g dar — (6551 S50 2 (guylo) o )o@
oily) ole g (shwg et ok el ( 5 e 51 BB Sgeme

...................................................... ogd slae )5 5l JSCioo sdasial jo 2 ie8 U 25 B9y j90 9 Guvaid @

U Cr e 9 95 U e sole s 5920

............................... . P XY LR C YR VLY PE SSURPR VI GUg] RGN T E ) PSWESVIR
Eade 30 9 (solol Alons

......................... 0 e 9 iz Sledbl 31 ooliiwl b oylul ol Gz ot (5l Gaos (5 SOl o o gy I,y @
uLu Mw‘a@ﬁéOM 963)')| L;U\Q,QM‘L;)U&I > )

B s 2"-5 dilowy 4 (6 3lgoniguiny o> (595 Bowilo dilows 9 4938l yiwles J5 @
Sllae (ool G 5 5505 2> el

..................................................... FINFET 4 i o)lg5 oS (o130 s SRAM Jokos S @

@wwujdwwmoulclﬁww‘duw



P bl ot 2ol wtigo g £k

JUESUC e T S KRN SRV STV

33165 s Sas 5D 1 gt gt U'}".‘ szl’ M‘ &9}3 GS“J‘ 4'3};"’

&5""‘ 6‘)9-‘"‘

UG ol ¢ s oKl ol (BT .5

adde (Y olKiils § (sl o sbiwl (bl .8
5 ol eyl Lo ,2 IS o8l sl cool; 8L

S5 ol o8 55l sIbT olBisls sliwl o9y o

1SS ol oyl bl —Ls o IS olils sliwl ¢ golo .o
Li:fo‘ gul.ium OKM.JL) QL..M:l ‘QL“’LQ? d

L«.”).».w‘ ‘L;\u\.».u oliw)‘b «)L».w‘ sl.’Laj) Nl

Ol ey cxio olKils sbiwl wl3ligsb s 2
1 ol o yiSiisly LT ol&isls sbiwl g3 s o
Ol e yde oo 3 olSils sliwl S

Oyl S el aio olSils sliwl ¢ isulis .
K—’]A‘ ‘L->)9> oli....;lo .)L....J‘ ‘L:.:u).: T
Sl e yasd sidales &S sbewl dlas g
Olnl o g ple oKl sbiwl ¢ b o

u‘)-il oy w).: oKy sbwl GuLuo.qus TP
Ol ey siris olRiils sl owad o

155 ol ebilghony LT olKiils sl oyl y90 .
e S Ko olKislo slw! o) B

Ol ey gisio olRKils sliwl 850 g

Ol ey i giaio o&iils sbiwl i g ol 9000 -

U‘JJl 4)....5)~A‘ ‘5._\,..4 olKisle slbiw! (G e
Ol dogng yu ol8ils sliwl (5L .S

OLadSl (gdS oKl sliwl dgalg .0

alxo yid0 (4,500
gl oz 5

S )LJ
JS¢ bl

pole 25 el Fgals ozl 285 V8wl F il P SO ¢ Bolo Iy et a5 wcin pd e oSS (08 1l eosliT UL
FoaelS ok 9

FEAYYYF-FF XY v e coals

FEYIVER 550

csi-jecse@ipm.ir : Sig pSIl oy

http://www.jcse.ir : s sl o

el gl oupe b g odld i g o Cudgius g Sl Le‘aiuaﬂg.oub.‘m)fubiﬁfo A s o] 30 oo gy wYlie

s 5 ol (55





